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Recent work by Amso and Johnson (Developmental Psychology, 42(6), 1236–1245, 2006) implicates
the role of visual selective attention in the development of perceptual completion during early infancy.
In the current article, we extend this finding by simulating the performance of 3-month-old infants on a
visual search task, using a multi-channel, image-filtering model of early visual processing. Model
parameters were systematically varied to simulate developmental change in three neural components
of visual selective attention: degree of oculomotor noise, growth of horizontal connections in visual cor-
tex, and duration of recurrent processing in parietal cortex. While two of the three components—hori-
zontal connections and recurrent parietal processing—are each able to account for the visual search
performance of 3-month-olds, recurrent parietal processing also suggests a coherent pattern of devel-
opmental change in visual selective attention during early infancy. We conclude by highlighting plau-
sible neural mechanisms for modulating recurrent parietal activity, including the development of
feedback from prefrontal cortex.

Keywords object perception · selective attention · visual search · infant development

1 Introduction

The concept of active vision plays a central role in the
constructivist theory of cognitive and perceptual devel-
opment (Piaget, 1955, 1969). According to this view,
organisms actively deploy their attention toward infor-
mation-rich areas of the visual world, while exploiting
efficient scanning strategies that shift attention from one
surface, object, or location to another.

From a developmental perspective, active vision
has direct implications for how human infants acquire
the capacity to perceive, recognize, and internally rep-

resent objects. In particular, proponents of the active
vision approach have argued that as infants gain skill in
visual exploration, their knowledge of objects becomes
progressively more complex and elaborated (e.g.,
Cohen, Chaput, & Cashon, 2002; Haith, 1980; John-
son, Slemner, & Amso, 2004; Piaget, 1955). Studies
with human infants are complemented by work in
machine vision and developmental robotics, which
also highlights the role of guided visual exploration as a
critical element of perceptual learning in artificial sys-
tems (e.g., Ballard, 1991; Sandini, Gandolfo, Grosso,
& Tistarelli, 1993).
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The purpose of the current simulation study was to
identify and investigate three neural mechanisms that
may serve to link changes in visual-motor skill with
parallel changes in object perception. In the next sec-
tion, we introduce the concept of perceptual comple-
tion, and review evidence for the development of this
capacity in young infants. In particular, we describe
recent work that illustrates a connection between the
emergence of perceptual completion and visual search
performance in 3-month-old infants (Amso & John-
son, 2006; Johnson, 2004). Next, we describe a multi-
channel, image-filtering model that is used to simulate
infants’ visual search performance. Following a descrip-
tion of the model, we present the findings from a series
of simulation studies that examine the influence of
three neural constraints on the development of visual
search in young infants (i.e., oculomotor noise, hori-
zontal connections in visual cortex, and recurrent
processing in parietal cortex). In the final section, we
highlight the role of recurrent parietal processing as a
neural constraint that may subserve the developments
of visual selective attention and perceptual comple-
tion.

2 The Development of Perceptual 
Completion

A fundamental step in the development of object per-
ception is the ability to perceive an object as complete
when it is only partially visible. This capacity is known
as perceptual completion. For example, consider the
partially-occluded rod in Figure 1A, which moves lat-
erally behind a screen. At birth, infants appear to lack
the capacity for perceptual completion, and instead
perceive displays like these as two separate surfaces that
move at the same time. In contrast, by age 4 months,

infants exhibit unity perception, that is, they perceive
the display as a single rod that is partially occluded.

Evidence for this developmental pattern comes
from a unity-perception task in which infants first see
a display like Figure 1A. This display is presented
repeatedly until infants habituate, that is, until their
looking time falls below a predetermined threshold.
After habituating, infants then watch two test events
in alternation: during one (1B, the complete-rod dis-
play), a single rod moves laterally, whereas in the other
(1C, the broken-rod display) two smaller, separate rods
move laterally at the same time.

Note that a key assumption underlying the test
phase is that after infants habituate to the occluded-rod
display, they are expected to look longer at whichever
test event appears more novel or dissimilar to the
occluded-rod display (i.e., show a novelty preference;
see Gilmore & Thomas, 2002; Sirois & Mareschal,
2002). In particular, the relative time that infants spend
looking at each of the test events provides a behavioral
index of whether they perceive the occluded rod (in the
habituation phase) as one solid object (with two exposed
segments), or alternatively, as two objects that move in
parallel. In particular, 4-month-olds look significantly
longer at the broken-rod display, indicating that the
complete rod is more similar to the occluded rod. In
contrast, newborn infants look significantly longer at
the complete-rod display, suggesting instead at this age
that the broken-rod display is more similar to the
occluded rod (Johnson, 2004).

Amso and Johnson (2006) reasoned that if advances
in visual-motor skill contribute to the development of
perceptual completion, then the same underlying skill
may also influence performance on other visual tasks.
In particular, they proposed that visual selective atten-
tion—the ability to select and attend to specific stim-
uli while ignoring or inhibiting attention to alternative

Figure 1 Displays used to assess perceptual completion in infants: (A) habituation display; (B) complete rod; and (C)
broken rod test displays.
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or competing stimuli—is not only a critical compo-
nent of visual-motor skill, but also should be reflected
in infants’ performance on both unity-perception and
visual search tasks. As a result, they predicted that
infants who show a more advanced level of perceptual
completion (i.e., unity perception) should also per-
form more successfully during visual search.

In order to test this hypothesis, Amso and John-
son (2006) assessed both (a) perceptual completion
and (b) visual search in a sample of 3-month-old infants.
Three-month-olds were specifically chosen for study, not
only because infants near this age appear to undergo a
shift from reflexive to controlled visual attention (e.g.,
Johnson, 1990), but also because this age range repre-
sents a transitional period that precedes the develop-
ment of unity perception.

Perceptual completion was assessed by presenting
infants with the standard unity-perception task (see
Figure 1): infants were first habituated to the occluded-
rod display, and then presented with the broken-rod
and complete-rod displays (in alternation) during the
test phase. Looking time during the unity-perception task
was determined by a trained observer, who viewed the
infant’s face on a remote television monitor and sig-
naled a computer whenever the infant looked at any
part of the display. In addition, the same infants were
also presented with a visual search task, composed of
two conditions: during the motion condition, a single
moving bar appeared in a field of identical stationary
bars, whereas during the orientation condition, a sta-
tionary tilted bar (oriented away from the vertical at
either 30°, 60°, or 90°; see Figure 2) appeared in a
field of stationary vertical bars. Infants were presented
with 24 trials within each condition. During the visual
search task, a trained observer operated a corneal
reflection eye-tracking system, which provided a real-

time estimate of the infant’s point of gaze. Each visual
search trial ended when either (a) the infant detected
the target, or (b) 4 seconds had elapsed.

After testing, Amso and Johnson (2006) divided
their sample of twenty-two 3-month-old infants into
two groups, as a function of each infant’s performance
on the unity-perception task. In particular, 11 infants—
hereafter, the “perceivers”—looked significantly longer
at the broken-rod test display, indicating that they had
perceived the occluded rod as one single object (i.e.,
unity perception). The remaining 11 infants—hereafter,
the non-perceivers—meanwhile, did not look longer
at either the complete or broken-rod test displays, sug-
gesting that they did not perceive the occluded rod as
a single object.

Next, the performance of the perceivers and non-
perceivers on the visual search task was compared.
Figure 3 presents the primary findings from this analy-
sis. First, as the top panel indicates, perceivers and
non-perceivers did not differ in their success at detecting
moving targets. In the orientation condition, however,
perceivers successfully detected a larger proportion of
the tilted target bars. Second, the bottom panel of Fig-
ure 3 presents the mean latency (i.e., time to detect the
target) in the orientation and motion conditions (note
that only successful trials are included in this analysis).
Interestingly, while perceivers and non-perceivers did
not differ in their time to detect moving targets, per-
ceivers were significantly slower than non-perceivers
at detecting targets in the orientation condition.

To summarize, a moving target appears to be a
highly salient stimulus, and consequently may not
require controlled visual search (or inhibition of dis-
tractor targets) to be detected by 3-month-old infants.
In contrast, tilted targets were detected less success-
fully by 3-month-olds. More importantly, however, as

Figure 2 Three of the displays (from the orientation condition) used to assess visual search in infants: (A) 30° target
display; (B) 60° target display; and (C) 90° target display.
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Amso and Johnson (2006) predicted, infants who pro-
vided evidence of unity perception were also more
successful at detecting targets in the orientation condi-
tion.

Taken together, the findings from Amso and John-
son (2006) not only demonstrate that unity perception
and visual search are related in 3-month-old infants,
but more specifically, that infants who have begun to
develop unity perception also appear to engage in more
exhaustive or deliberate visual search strategies. These
data are consistent with the role of visual selective
attention as a common feature in the development of
both unity perception and visual search. In the next

section, we highlight three neural components of visual
selective attention, and describe a multi-channel, image-
filtering model that simulates the effects of these com-
ponents on the development of visual search.

3 A Model of Visual Selective Attention

By implicating the role of visual selective attention in
the development of unity perception, the findings from
Amso and Johnson (2006) raise an important question:
What are the developmental mechanisms that drive
changes in visual selective attention (i.e., attention
deployment)? Are these changes specifically due to the
emergence of unity perception? In other words, does
emerging knowledge of a predictable world of objects
lead to a coherent strategy for gathering visual infor-
mation? Alternatively, does visual selective attention
emerge as the result of a more general, underlying
capacity?

To investigate this issue, a multi-channel, image-
filtering model of visual processing in the occipital and
parietal cortex was used to simulate the visual-search
performance data obtained by Amso and Johnson (2006).
The model was originally developed by Itti and Koch
(2000), and incorporates several basic principles of
neural processing in the mammalian visual system,
including: (a) decomposition or filtering of the visual
stream into multiple parallel feature channels, (b) reti-
notopic feature maps, (c) center-surround organization
in early visual areas, and (d) competition for attention
(between multiple salient locations) in a retinotopic
“salience map” (e.g., Kastner & Ungerleider, 2000).
From a computational perspective, the model is also
consistent with theoretical accounts of visual attention
that emphasize the extraction and combination of mul-
tiple visual features in parallel, such as feature integra-
tion theory (Treisman & Gelade, 1980).

3.1 Model Overview: Structure and Function

The intuition behind the image-filtering model is that
patterned projections of light (i.e., the optic array) that
enter the eye experience a number of well-defined
transformations that are analogous to a series of opti-
cal filtering systems. These neural “filters” include the
retina, lateral geniculate nucleus (LGN), and occipital
cortex, as well as the extrastriate areas (e.g., parietal
and temporal cortices). The model is not a detailed

Figure 3 Top panel: Mean detection rates (proportion
detected) for the perceivers and non-perceivers as a
function of target condition (orientation vs. motion). Bot-
tom panel: mean latency (on successful trials) for the per-
ceivers and non-perceivers as a function of target
condition (orientation vs. motion).
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representation of striate and extrastriate anatomy and
physiology, but is instead designed to capture five gen-
eral stages of visual processing in the mammalian vis-
ual system: (a) feature detection or extraction (across
four visual channels), (b) center–surround contrast
enhancement, (c) within-feature competition, (d) inte-
gration of within-feature maps into a unified salience
map, and (e) selection of a salient location for fixation.

Input to the model is presented as a three-dimen-
sional array of pixel values (i.e., three two-dimensional
arrays that specify the amount of red, green, blue for
each pixel in the input image), taken from the same
stimuli used by Amso and Johnson (2006). As Figure 4
illustrates, the initial array of pixel values (analogous
to a retinotopic map) is transformed across several

dimensions (i.e., filter channels) in parallel. At the final
stage of filtering, the separate maps are combined into
a single, composite retinotopic (saliency) map.

In Section 4, we illustrate how the resulting sali-
ency map is used to simulate infants’ visual search.

We provide here a brief description of the sequence
of processing stages in the image-filtering model. It is
important to note that while this description highlights
the process of optical transformation in the model (e.g.,
feature extraction, contrast enhancement, etc.), the
mathematical operations that underlie each of the filter-
ing stages are general enough that they can be computed
through a number of different numerical techniques,
including both linear filtering methods and artificial
neural networks.

3.1.1 Feature Extraction The first stage of the image-
filtering model corresponds to feature extraction in
early visual processing (e.g., retinal ganglion cells and
LGN). Accordingly, four parallel image filters extract
image intensity, oriented edges, motion, and opponent-
color contrast from a raw input image (see Figure 4):
(1) intensity maps are obtained by converting color
input images to grayscale; (2) oriented edges are
abstracted by processing the input image with oriented
gabor wavelets (see Mermillod, Chauvin, & Guyader,
2004, for a comparable approach); (3) motion is com-
puted as the (absolute) difference in corresponding
pixels at each location in the input image, between
consecutive images; and (4) opponent-color process-
ing is determined by weighting and summing the red–
green and blue–yellow color channels (for a detailed
description of how each feature is extracted, see Itti,
Koch, & Neibur, 1998). Eight separate feature dimen-
sions are computed, including one intensity, four ori-
entation (i.e., 0°, 45°, 90°, and 135°), one motion, and
two color (i.e., red–green and blue–yellow) dimen-
sions. A total of 24 feature maps are computed, as the
eight dimensions are extracted across three spatial
scales or frequencies (i.e., fine, medium, and coarse).

3.1.2 Contrast Enhancement During the second
stage of filtering, each of the feature maps is proc-
essed through a filter analogous to center–surround
excitation–inhibition. This stage not only replicates a
key functional property of early visual processing, but
also serves to enhance contrast in the feature map

Figure 4 Illustration of two of the filtering stages from
the image-filtering model, including the end of the within-
feature orientation stage (middle four maps) and the sali-
ence map stage (bottom map).
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while reducing background noise present in the input
image.

3.1.3 Within-Feature Competition During the third
stage, each feature map is processed through an image
filter that represents short- and long-range connections
in V1; short-range connections are excitatory, whereas
long-range connections are inhibitory. As a result of
this filtering process, the presence of a feature at a
given location (e.g., a vertical edge) is self-stimulating
within a local neighborhood, but also inhibitory to the
same type of feature (e.g., other vertical edges) at
greater distances. In the current model, it is important
to note that within-feature competition is implemented
as a discrete iterative process that can occur one or more
times. As a result, the number of iterations or loops in
the within-feature competition process is parameter-
ized in the model, and is intended to correspond to the
temporal duration of recurrent activity in posterior pari-
etal cortex.

At the end of this stage, the feature maps are
summed across the three spatial scales and within each
of the four feature channels. Figure 4 illustrates these
four “conspicuity” maps (i.e., intensity, orientation,
motion, and color channels, respectively). The net effect
of filtering and combining the feature maps at the
third stage is that, within each dimension, similar fea-
tures are inhibited while distinct or spatially isolated
features are enhanced. In particular, note in the orien-
tation map that vertical lines are suppressed, while the
diagonal line “pops out.”

3.1.4 Salience Map No additional filtering occurs
during the fourth stage. Rather, the four conspicuity
maps are summed into a single retinotopic map, which
represents the integration of separate visual channels
into a unified salience map. Note that the salience map
does not encode the presence of a particular feature,
but instead the relative salience of one or more fea-
tures at each location in the visual field.

3.1.5 Location Selection The final stage of the
model converts activity over the salience map into an
array of candidate or potential targets for fixation (i.e.,
locations to which the fixation point is likely to be
shifted). Rather than sorting locations by their activa-

tion (i.e., salience) level, and then simply assuming that
fixations deterministically shift from the highest to the
next highest salience-point in the map, we instead
employ a stochastic process, in which a probability of
fixation is associated with each location in the sali-
ence map.

In particular, a softmax equation was implemented,
including a parameter (tau) that modulates the proba-
bility of selecting different locations on the salience
map (tau is analogous to the temperature parameter in
the algorithm for simulated annealing). By varying the
value of tau, we can flexibly shift from an optimal,
deterministic pattern of location selection (i.e., values
of tau near 0) to a predominantly stochastic pattern, in
which both highly-salient and less-salient locations
have a chance to be selected.

3.2 Neural Constraints on Visual 
Selective Attention

The image-filtering model was used to examine the
hypothesis that visual selective attention is constrained
by the development of one or more underlying neural
subsystems. In particular, three specific subsystems
were identified, parameterized in the model, and inde-
pendently varied in order to generate corresponding
developmental trajectories.

3.2.1 Oculomotor “Noise” Several lines of research
suggest that variability is not only an inherent feature
of behavior, but that it also provides an important source
of experience during early motor development (e.g.,
Piek, 2002). According to this view, “noisy” or varia-
ble behavior during early development is not neces-
sarily due to immature control systems, but instead
may be an adaptive strategy for exploring sensorimo-
tor contingencies. There are also several analogous
examples of this approach in the machine learning lit-
erature, including the concepts of “motor babbling” and
the “exploration-exploitation” tradeoff (e.g., Kuperstein,
1988; Sutton & Barto, 1998).

A general theme that emerges from this work is a
developmental pattern that begins with relatively high
amounts of behavioral variability, followed by a grad-
ual decrease in variability over time. This pattern was
simulated in the image-filtering model by systematically
tuning the value of tau, which modulates the probabil-
ity of fixating a salient location (i.e., oculomotor noise).
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In particular, at low levels of tau, there is a high prob-
ability of fixating a salient location (i.e., “greedy”
action selection), while at high levels of tau this prob-
ability is decreased (i.e., an increase in sub-optimal or
exploratory actions).

3.2.2 Horizontal Connections in V1 A second poten-
tial constraint on the development of visual selective
attention is the growth of lateral or horizontal connec-
tions in V1 (e.g., Albright & Stoner, 2002; Hess &
Field, 1999). Although the precise function of these
connections is currently the subject of debate, they
appear to play an important role in the perception of
contours, and in particular, the integration or percep-
tual “fill-in” of contours that are interrupted by spatial
gaps (e.g., due to occlusion; Albright & Stoner, 2002).

A related computational function was examined in
the present model by varying the size of the filter used
to compute within-feature competition. In particular, the
size of the filter (i.e., the percentage of the input image
that the filter spans) enables the distance of “long-
range” interactions (i.e., inhibition and excitation) in the
retinotopic feature maps to be directly modulated.
Analogous to the growth of horizontal connections in
V1 during infancy, an increase in this distance corre-
sponds to a larger range of alternative salient locations
that simultaneously compete for attention. In effect, as
the distance parameter increases, the likelihood dimin-
ishes that a spurious, less-salient location will succeed
in attracting the model’s attention.

3.2.3 Recurrent Processing in Parietal Cortex 
A third neural constraint focuses on the role of recur-
rent or sustained activity within the posterior parietal
cortex. Neural activity in this region has direct implica-
tions for visual attention, insofar as parietal retinoto-
pic maps (e.g., in the intraparietal sulcus) appear to
encode for the salience of visual stimuli (e.g., Gott-
lieb, Kusunoki, & Goldberg, 1998; Shafritz, Gore, &
Marois, 2002).

Itti and Koch (2000) propose a recurrent model of
parietal activation, in which recurrent feedback (in
the parietal “salience map”) is associated with sus-
tained competition between salient locations. This was
achieved in the model by varying the number of dis-
crete iterations or loops that are completed during the
within-feature competition stage. In computational

terms, extending the duration of this feedback increases
the likelihood that the salience map will “settle” into a
stable activation pattern. Similarly, in functional terms,
varying the duration of recurrent feedback is analo-
gous to modulating the time spent covertly “compar-
ing” two or more putative targets. As we highlight in
the final section, there are a number of neural mecha-
nisms that have been proposed for modulating recur-
rent parietal activity, including signals originating
within the parietal and frontal cortex (e.g., Kastner &
Ungerleider, 2000).

4 Simulation Results

Two sets of simulations were conducted. In the first
set, we simulated the development of visual search by
systematically varying each of three parameters in the
model, corresponding to oculomotor noise, horizontal
connections in V1, and recurrent parietal processing,
respectively. A key finding from this first set of simula-
tions was that modulation of recurrent parietal process-
ing results in a developmental profile that corresponds
to the performance of perceivers and non-perceivers
observed by Amso and Johnson (2006). Accordingly,
we pursued this finding in a second set of simulations
by using the model to generate real-time visual search
patterns.

4.1 Simulating the Development of Visual 
Search

Development of visual search was simulated by pre-
senting the image-filtering model with the same stim-
uli used by Amso and Johnson (2006). In particular,
recall that infants were tested in two conditions (i.e.,
24 motion trials and 24 orientation trials). The motion
condition was simulated by sampling the first two
frames from each of the 24 motion stimuli used by
Amso and Johnson (2006). In particular, because the
target bar moved at a fixed velocity during each motion
trial, only the first two frames were needed to activate
the motion map (i.e., with the use of frame-differenc-
ing to detect motion). Similarly, the orientation condi-
tion was simulated by sampling the first frame from
each of the 24 orientation trials (i.e., only one frame
was needed, since there was no motion in the orienta-
tion condition). Input images were downscaled to 133
by 100 pixels.
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Target detection rates were estimated by passing
the appropriate image frame (or frames) through the
image-filtering model, and then assigning a probabil-
ity of fixation to the 100 most active locations on the
corresponding salience map. Fixations that contacted
the target were pooled, and the corresponding proba-
bilities for these fixations were summed, resulting in a
cumulative (estimated) probability of fixating the tar-
get for each particular stimulus.

Preliminary simulations of the visual search task
were used to identify optimal values for the three devel-
opmental parameters (i.e., oculomotor noise, horizon-
tal connections, and recurrent parietal processing). In
particular, the mean probabilities of fixating the target
were 99.42% and 90.75% during the motion and ori-
entation conditions, respectively, with the following
parameter values: tau = 0.5, range of horizontal con-
nections = 99 pixels, and number of recurrent parietal
loops = 10. Development of visual search was then
simulated by varying each of these parameters system-
atically (while holding the other two parameters fixed
at their optimal values), and computing the mean tar-
get detection rates generated by the model during the
motion and orientation conditions.

As noted earlier, Amso and Johnson (2006) reported
that while both perceivers and non-perceivers were
near-optimal at detecting the moving target in the
motion condition, perceivers succeeded at detecting
the tilted target in the orientation condition roughly
55% of the time, whereas non-perceivers succeeded
roughly 45% of the time (see Figure 3). Recall that per-
ceivers also had significantly longer search times. As
a consequence, the simulation analyses were guided by a
generalized “goodness of fit” strategy, in which the
developmental trajectory produced while modulating
each of the three model parameters was compared
with the performance profile generated by 3-month-
old infants. In particular, an acceptable degree of fit
was defined a priori by a shift in the model from 45%
to 55% target detection rate in the orientation condi-
tion, accompanied by near-optimal detection rates in
the motion condition for the corresponding parameter
values.

4.1.1 Developmental Decline of Oculomotor Noise
The developmental decline of oculomotor noise was
simulated by testing the image-filtering model under a
regime in which tau was varied from 30 to 0.5. As

Figure 5A illustrates, detection rates during both the
motion and orientation conditions increased as tau fell
(note that the direction of the x-axis is reversed).

Two relevant findings emerged as tau was modu-
lated. First, as for 3-month-old infants, overall the
model was more successful at detecting the target dur-
ing the motion condition (t(10) = 14.50, p < 0.001);
the mean proportion of detected targets was 0.76 and
0.54 for the motion and orientation conditions (SD =
0.11 and 0.14, respectively).

Second and more importantly, the developmental
trajectory that was generated as tau declined is not
consistent with the search performance of 3-month-
old infants. In particular, the pair of vertical lines in
Figure 5A highlight the values of tau where the model

Figure 5 Developmental trajectories of the model on the
visual search task as three parameters were varied: (A)
oculomotor noise; (B) range of horizontal connections;
and (C) number of recurrent parietal loops. Vertical lines
denote points in the model’s performance that correspond
to non-perceivers and perceivers (see text for details).
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transitions from 45% to 55% detection in the orienta-
tion condition (i.e., approximately between 15 and 9).
Thus, at values of tau where the model’s performance
on the orientation condition captures the difference
between 3-month-old non-perceivers and perceivers,
its performance in the motion condition lags well
behind that of both groups of 3-month-old infants.

4.1.2 Development of Horizontal Connections
Next, the development of horizontal connections in
V1 was simulated by testing the image-filtering model
as the range of these connections was increased from
9 to 99 pixels. As before, the model was more success-
ful overall at detecting the target during the motion
condition (t(9) = 7.83, p < 0.001); the mean propor-
tion of detected targets was 0.96 and 0.29 for the
motion and orientation conditions (SD = 0.06 and
0.28, respectively).

The pair of vertical lines in Figure 5B highlight the
transition in the model from 45% to 55% detection in
the orientation condition, as horizontal connections
increased in size (i.e., from approximately 82 to 85
pixels). Between these parameter values, the model
is near 100% accurate at detecting the target in the
motion condition. Thus, although the developmental
shift in the model that corresponds from non-perceivers
to perceivers is comparatively rapid, the qualitative
pattern of this trajectory is comparable to the visual
search performance patterns observed in 3-month-old
perceivers and non-perceivers.

4.1.3 Development of Recurrent Parietal Process-
ing Finally, the development of recurrent parietal
processing was simulated by testing the model while
the number of recurrent parietal filter iterations or loops
increased from 0 to 10. Again, the model detected the
target more often overall during the motion condition
(t(10) = 5.80, p < 0.001); the mean proportion of
detected targets was 0.92 and 0.59 for the motion and
orientation conditions (SD = 0.14 and 0.29, respec-
tively).

Figure 5C illustrates the improvement in visual
search performance, during the motion and orientation
conditions, as the number of recurrent parietal loops
increases. Interestingly, as the pair of vertical lines
indicate, the transition from 3 to 4 loops corresponds
to the transition from 45% to 55% detection of the tar-

get in the orientation condition (i.e., analogous to the
difference between non-perceivers and perceivers).
During this increase in the number of parietal loops,
meanwhile, the model did not improve significantly in
the motion condition (t(23) = 1.61, p = 0.12). In par-
ticular, the mean proportion of detected targets was
near-ceiling at 0.97 and 0.99 for three and four loops,
respectively (SD = 0.14 and 0.29).

4.2 Simulating Real-Time Visual Search 
Performance

The findings from the first set of simulations provide
two potential accounts for the difference in visual
search performance between perceivers and non-per-
ceivers: either (1) the growth of horizontal connec-
tions in V1, and/or (2) an increase in recurrent parietal
processing. However, it is important to note that
whereas changes in horizontal connections occur on the
spatial dimension, increases in the number of recur-
rent loops or iterations occur on the temporal dimen-
sion. In other words, more loops take more time. This
is a key distinction, because an increase in the number
of loops can be interpreted as a developmental predic-
tion that as infants become more successful at detect-
ing stationary, tilted targets in a field of vertical
distracters, they should also take longer to detect those
targets. Indeed, this is exactly the performance differ-
ence that distinguishes non-perceivers from perceivers
(Amso & Johnson, 2006).

Therefore, we chose to focus our next analysis on
the role of recurrent parietal processing as a constraint
on the development of visual selective attention, and
of visual search in particular. Unfortunately, the find-
ings from the previous simulations are limited in part
by the fact that search performance in the model was
defined as an aggregate, probabilistic estimate based
on a set of potential—but not actually produced—eye
movements. In particular, note that while infants were
given a maximum of 4 seconds per trial to detect the
target in the motion and orientation conditions, the
estimated detection rates generated by the model are
produced under the assumption of unlimited search
time, or more precisely, an unrealistically long series
of saccades or gaze shifts (e.g., 100 saccades).

In order to address this issue, we conducted a sec-
ond set of simulations, in which three additional con-
straints were incorporated into the model that enable it
to produce a sequence of eye movements in simulated
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real-time. Before describing these constraints, it is
important to stress that our goal in simulating real-
time performance was to illustrate how modulating
the amount of recurrent parietal processing leads to a
corresponding shift in the performance of the model
from the non-perceiver profile to the perceiver profile.
As we highlight below, the choice of these constraints
was guided not only by existing empirical data, but also
by heuristics from motor control research.

In order to translate the output of the model (i.e.,
the salience map) into a series of eye-movements, three
specific constraints were introduced: (1) saccade fre-
quency, (2) inhibition of return, and (3) a salience–
distance tradeoff.

4.2.1 Saccade Frequency While Amso and John-
son (2006) did not directly measure gaze-shift or sac-
cade frequency during the visual search task, they do
have a direct measure from the same infants during
the unity-perception task. In particular, infants shifted
their gaze approximately once every 220 ms (with a
standard deviation of 20 ms). Accordingly, the dura-
tion between successive fixations in the model was
simulated by assuming that the build-up of a motor
signal prior to each eye movement follows a normal
distribution (i.e., µ = 220 ms, σ = 20 ms). In addition,
it was also assumed that each iteration of the recurrent
parietal processing loop follows the same distribution.

4.2.2 Inhibition of Return A second constraint added
to the model was an inhibition-of-return mechanism.
Specifically, after each fixation, the next gaze shift
was subject to a minimum-distance constraint. In other
words, subsequent fixations were required to be at
least 24 pixels apart (i.e., 10% or more of the input
image width). This constraint is analogous to the inhi-
bition-of-return phenomenon observed in infants, chil-
dren, and adults, in which attention to a particular
location is followed by a tendency to avoid returning
to that location (e.g., Hood, 1995; Johnson, 1994). In
effect, it ensures that the model does not “lock” onto
one salient location and then only generate small sac-
cades to neighboring locations.

4.2.3 Salience–Distance Tradeoff The third con-
straint was motivated by the reasoning that if the

model simply followed the gradient of salience over
the input image (i.e., subsequent fixations are to suc-
cessively less-salient locations), occasional saccades
might require traversing the entire distance of the input
image (e.g., require both head and eye movements).
While it is not clear whether infants’ saccade patterns
are subject to an energetic or metabolic constraint, it
seems both unlikely and inefficient that gaze shifts are
determined by salience alone. As a result, a normali-
zation function was implemented, which weighted the
salience of each potential saccade target by the distance
required to shift the fixation point to that location (i.e.,
salience divided by saccade distance). In effect, this
normalization created a tradeoff between (a) the stim-
ulus salience for each location on the input image ver-
sus (b) the “work” required to fixate that location.

Subject to these three constraints, the model was
then presented with the same two sets of input images
that were used in the previous simulations (i.e., 24
motion trials and 24 orientation trials). The perform-
ance of non-perceivers was simulated by allowing the
parietal loop to iterate a maximum of three times during
each trial, while perceivers were simulated by allow-
ing the loop to iterate a maximum of four times per
trial. As the salience map was updated at the end of each
parietal processing loop, both simulated perceivers
and non-perceivers generated a saccade each time the
salience map was updated. Note that while the salience
map was eligible to be updated, the delay between
saccades was a function of both the build-up of the
motor signal and the time allotted to the parietal loop
(i.e., roughly 220 ms for each process); once the pari-
etal loop reached its maximum number of iterations
(either three or four, respectively), the salience map
was no longer updated, and the delay between subse-
quent saccades was due to build-up of the motor sig-
nal alone.

At the start of each trial, the model’s simulated
fixation point was positioned at a random location on
the input image. The model then produced a series of
saccades, following the constraints described above.
As with infants, each trial concluded when either (a)
the model succeeded in fixating the target (i.e., gener-
ating a saccade that made contact with the target bar),
or (b) the model failed to fixate the target within 4 s
(i.e., 4,000 ms). Similarly, 10 simulated perceivers
and 10 simulated non-perceivers were tested by ini-
tializing and testing the model ten times in each con-
dition.
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The results from the simulated real-time perform-
ance of the model are summarized in Figure 6. First,
the upper panel presents the proportion of trials in
which the model was successful in detecting the target.
Like infants, the model not only detected more targets
during the motion condition than during the orientation
condition, but more importantly, increasing the number
of parietal processing loops from three to four resulted
in an increase in the proportion of targets detected from
0.47 to 0.59 in the orientation condition (SD = 0.11 and

0.07, respectively; t(18) = 2.88, p < 0.01). While there
was also a significant difference in the proportion
detected during the motion condition (unlike infants),
this was likely due in part to the fact that the model
detected all moving targets (i.e., variance was 0) in the
four-loop condition (t(18) = 6.02, p < 0.001). On a
related note, the model also appears to be slightly more
successful than infants in the motion condition. Nota-
bly, however, the overall pattern of performance gen-
erated by the model closely mirrors that produced by
infants (see Figure 3).

Second, the bottom panel in Figure 6 presents mean
detection latency for the model, as a function of target
condition (recall that only successful trials are included
in this analysis). Again, the overall pattern of perform-
ance generated by the model is remarkably close to the
pattern seen in infants. As the model succeeded in
detecting moving targets relatively quickly (i.e., typi-
cally between the second and third iteration of the parietal
loop), the difference in mean latency when the number
of parietal loops was increased from three to four did
not reach significance (t(18) = 1.76, p = 0.09). During
the orientation condition, however, there was a signif-
icant difference in mean latency between three and
four loops (t(18) = 4.39, p < 0.001). In particular, the
model was significantly faster at detecting the tilted
bar when parietal processing was limited to three loops
versus four (M = 1117 and 1528 ms, respectively; SD =
224 and 192).

5 Discussion

The aim of the present simulation study was to identify
and investigate the influence of three neural constraints
on the development of visual search. Accordingly, a
multi-channel, image-filtering model was used to sim-
ulate the development of visual search in young infants.
Oculomotor noise, growth of horizontal connections
in visual cortex, and recurrent parietal processing were
each varied independently, in order to generate three
sets of developmental trajectories. Although changes
in oculomotor noise did not produce a developmental
pattern that corresponded to observed performance
differences in 3-month-old infants, changes in both
horizontal connections and recurrent parietal process-
ing did.

These findings highlight two potential neural mech-
anisms that may account for developmental changes

Figure 6 Top panel: Mean simulated detection rates
(proportion detected) generated by the model with a max-
imum of either three or four parietal loops as a function of
target condition (orientation vs. motion). Bottom panel:
mean simulated latency (on successful trials) with a max-
imum of either three or four parietal loops as a function of
target condition (orientation vs. motion).
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in visual search, and more generally, the development
of visual selective attention. On the one hand, growth of
connections between neurons in V1 may promote the
capacity to pre-attentively or subconsciously “com-
pare” multiple, salient stimuli. Alternatively, an increase
in the duration of recurrent activation in the parietal
cortex may allow salient stimuli more time to compete
for attention.

A second set of analyses was also conducted, focus-
ing on the latter mechanism. In particular, three addi-
tional constraints were incorporated into the model,
which allowed real-time visual search performance to
be simulated while recurrent parietal activity was sys-
tematically modulated. Two key findings emerged from
this second set of simulations. First, as predicted by the
first set of simulations, increasing the amount of recur-
rent parietal processing resulted in a more successful
visual search in the orientation condition. More specif-
ically, the model’s detection rates closely matched the
performance of perceivers and non-perceivers. Second,
the same increase in recurrent parietal processing also
accounted for the difference in search time exhibited by
perceivers and non-perceivers. In other words, like
human infants, greater parietal processing resulted in
more accurate visual search, as well as longer search
times.

Taken together, these findings highlight the role
of the posterior parietal cortex in the development of
visual selective attention. In addition, they may also
implicate a specific neural mechanism to account for
developmental changes in oculomotor skill. In particu-
lar, the image-filtering model not only provides a coher-
ent computational framework for illustrating how
retinotopically-organized visual maps are successively
formed and transformed, but it also suggests a process-
ing pathway that integrates sensory input and motor
action through the concept of a salience map.

The current findings also raise three important ques-
tions. First, why does increasing the amount of recur-
rent parietal activity result in slower, but also more
accurate visual search? A tentative answer to this ques-
tion can be gleaned by observing changes in the sali-
ence map over successive iterations of the recurrent
parietal processing loop: specifically, the within-
feature competition algorithm is designed to inhibit
or suppress similarly-activated regions on the salience
map (i.e., homogeneous regions), while enhancing
activity in portions of the salience map where unique
features are located (i.e., non-homogeneous regions).

In topological terms, recurrent parietal processing
serves to isolate one or a few peaks on the salience
map, while lowering the activity of shallow, uniform
areas.

By this account, it is possible that a shallow map
may result in larger or more spatially-distributed move-
ments of the fixation point over the visual field, but
with no corresponding increase in the probability of
detecting a particular target. In other words, a shallow
salience map is likely to provoke relatively indiscrim-
inate overt scanning (e.g., a type of “shotgun” strat-
egy). In contrast, if we assume that a given target has
not yet been detected, and the salience map continues
to evolve in real-time, the emergence of one or a few
activation peaks on the map may serve to orient or direct
subsequent fixations to those peaks, resulting in more
focused scanning. The cost for this success, though, is
longer search time as the peaks on the salience map
gradually take shape.

A second question concerns the specific neural
mechanisms that are responsible for modulating recur-
rent parietal processing. The current results demon-
strate that “manually” varying recurrent feedback—akin
to a hardwired or maturational constraint—impacts
directly on visual search. However, rather than assum-
ing this change is due purely to maturational factors,
the modulatory role may instead be accomplished by
the internal dynamics of activity within the parietal
cortex, or alternatively, from feedback connections from
developing areas in the prefrontal cortex (e.g., Can-
field & Kirkham, 2001; Kastner & Ungerleider, 2000;
Spratling & Johnson, 2004). As a result, two goals of
future modeling work are (1) to identify and compare
neurally-plausible optimization techniques that are
available to simulate adaptive changes in recurrent
feedback (e.g., reinforcement learning), and (2) to use
these techniques to examine both environmental and
neurobiological mechanisms that may drive the devel-
opment of visual selective attention.

Third, and perhaps most importantly, the current
findings provide a suggestive link between unity per-
ception and visual search. However, recall that we
began by hypothesizing that visual selective attention
is the fundamental skill or capacity that distinguishes
perceivers from non-perceivers on both the unity per-
ception and visual search tasks. In order to provide
more substantial support for this hypothesis, a long-
term goal is to continue refining our approach, so that
the same core model (i.e., architecture, learning algo-
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rithm, free parameters, etc.) will be able to simulate
infants’ performance on both tasks.

Finally, we return to a central theme raised at the
beginning of the paper, that is, the role of active vision
in the development of object perception. In particular,
it may appear that the model’s behavior is largely
reactive or passive (i.e., stimulus-driven), insofar as
attentional shifts are produced in response to the sali-
ence of external features. However, it is important to
note that the salience map is not simply the product of
external input, but it is also constrained or influenced
by three endogenous processes: (1) feature extraction,
(2) feature competition, and (3) the selection of poten-
tial targets for fixation. While each of these processes
has one or more parameters that were held fixed in the
current model, it is a reasonable next step to allow
each parameter to vary adaptively, as a function of
either the model’s momentary state (e.g., habituation
level) or its long-term experience (e.g., prior encoun-
ters with other objects). As a consequence, the result-
ing model more transparently illustrates the real-time
interaction between stimulus-specific and endogenous
or organism-specific factors that we believe occur dur-
ing active vision.

To conclude, recent work provides evidence that
visual search and perceptual completion rely on a com-
mon, underlying perceptual-processing system (Amso
& Johnson, 2006). The concept of visual selective
attention was proposed in the current study as a capac-
ity that may underlie performance on both of these
tasks, and provide a fundamental constraint on the
development of object perception and cognition. This
approach is consistent with the theory of active vision,
and in particular, with the idea that human infants con-
struct a progressively more complex world of objects
as their visual-motor skill improves. Future work will
extend the current simulation findings, to investigate
whether the neural constraints examined here also
influence the development of perceptual completion.
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