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We are pursuing the hypothesis that visual exploration and learning in young infants is
achieved by producing gaze-sample sequences that are sequentially predictable. Our recent
analysis of infants’ gaze patterns during image free-viewing (Schlesinger and Amso, 2013)
provides support for this idea. In particular, this work demonstrates that infants’ gaze
samples are more easily learnable than those produced by adults, as well as those produced
by three artificial-observer models. In the current study, we extend these findings to a well-
studied object-perception task, by investigating 3-month-olds’ gaze patterns as they view a
moving, partially occluded object. We first use infants’ gaze data from this task to produce
a set of corresponding center-of-gaze (COG) sequences. Next, we generate two simulated
sets of COG samples, from image-saliency and random-gaze models, respectively. Finally,
we generate learnability estimates for the three sets of COG samples by presenting each
as a training set to an SRN. There are two key findings. First, as predicted, infants’ COG
samples from the occluded-object task are learned by a pool of simple recurrent networks
faster than the samples produced by the yoked, artificial-observer models. Second, we also
find that resetting activity in the recurrent layer increases the network’s prediction errors,
which further implicates the presence of temporal structure in infants’ COG sequences.
We conclude by relating our findings to the role of image-saliency and prediction-learning
during the development of object perception.

Keywords: object perception, prediction-learning, infant development, eye movements, visual saliency

INTRODUCTION
The capacity to perceive and recognize objects begins to develop
shortly after birth (e.g., Fantz, 1956; Slater, 2002). A critical
skill that emerges during this time and supports object percep-
tion is gaze control, that is, the ability to direct gaze toward
informative or distinctive regions of an object, such as edges
and contours, as well as to shift gaze from one part of the
object to another (e.g., Haith, 1980; Bronson, 1982, 1991). There
are a number of relatively well-studied mechanisms that help
drive the development of gaze control – in particular, during
infants’ visual object exploration – including improvements in
acuity and contrast perception, inhibition-of-return, and selec-
tive attention (e.g., Banks and Salapatek, 1978; Clohessy et al.,
1991; Dannemiller, 2000). While these mechanisms help to
explain when, why, and in which direction infants shift their
gaze, they may offer limited explanatory power in accounting
for gaze-shift patterns at a more fine-grained level (e.g., the par-
ticular visual features sampled by the fovea at the next fixation
point).

In the current paper, we present and evaluate a microanalytic
approach for analyzing infants’ gaze shift sequences during visual
exploration. Specifically, we convert the sequence of fixations pro-
duced by each infant into a stream of “center-of-gaze” (or COG)
image samples, where each sample approximates the portion of the
image visible to the fovea of a human observer while fixating the

given location on the image (for a related approach, see Dragoi and
Sur, 2006; Kienzle et al., 2009; Mohammed et al., 2012). We then
use a simple recurrent network (SRN) as a computational tool for
estimating the presence of temporal or sequential structure within
infants’ COG gaze patterns.

The rationale for our analytical strategy is guided by two key
ideas: first, that a core learning mechanism in infancy is driven
by the detection of statistical regularities in the environment (e.g.,
Saffran et al., 1996), and second, that a wide range of infants’
exploratory actions, such as visual scanning and object manipu-
lation, are future-oriented (e.g., Haith, 1994; Johnson et al., 2003;
von Hofsten, 2010). Together, these ideas suggest that infants’
ongoing gaze patterns are predictive or prospective. Thus, our
primary hypothesis is that if infants’ gaze patterns are sequentially
structured, we should then find that the stream of recent fixa-
tions toward an object or scene will provide sufficient information
to predict the content of upcoming fixations. A related hypothe-
sis is, given that sequential structure is observed in infants’ gaze
patterns, these sequences should be more predictable (i.e., more
easily learned by an SRN) than those generated by other types
of observers (e.g., human adults, ideal, or artificial observers,
etc.).

Our recent work has provided preliminary support for both of
these hypotheses. In particular, we compared the gaze sequences
produced by 3-month-old infants and adults during an image
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free-viewing task with those from three sets of artificial observers
(i.e., image-saliency, image-entropy, and random-gaze models)
that were presented with the same natural images (Schlesinger and
Amso, 2013; Amso et al., 2014). The real and artificial observers’
fixation data were first transformed into corresponding sequences
of COG samples. We then measured the learnability of the five sets
of COG image sequences by presenting each set to an SRN, which
was trained to reproduce the corresponding sequences. A key find-
ing from this work, over two simulation studies, was that the COG
sequences produced by the human infants resulted in both more
accurate and rapid learning than the adult COG sequences, or any
of the three artificial-observer sequences.

In the current paper, we extended our model in a num-
ber of important ways to investigate the development of object
perception in 3-month-olds. First, our dataset derives from a
paradigm called the perceptual-completion task, which is specif-
ically designed to assess infants’ perception of a moving, partially
occluded object (Kellman and Spelke, 1983; Johnson and Aslin,
1995). Figure 1A illustrates this occluded-rod display, which is
presented first to infants, and then repeated until they habitu-
ate to the display. Two subsequent displays are then presented
to infants and used to probe their perception and memory of
the occluded-rod display (see Figures 1B,C). Because our focus
here is on infants’ initial gaze patterns at the beginning of the
task, before they have accumulated extensive experience with
the display, we therefore restrict our analyses to gaze data from
the first trial of the occluded-rod display. Although this display
is somewhat simplified relative to the natural images from our
previous study, it also has the benefit that infants will likely
devote much of their attention to either of the two primary
objects in the scene (i.e., the moving rod and/or the occluder),
thereby producing a rich source of object-directed gaze data to
analyze.

A second important advance in the current paper concerns
how the artificial-observer gaze patterns are produced. Specifi-
cally, in our previous model, several parameters of the artificial
observers were left to vary freely, which resulted in systematic dif-
ferences between the kinematics of the gaze patterns produced by
the human-infant and artificial observers. For example, the arti-
ficial observers generated significantly longer gaze shifts than the
infants. We address this issue in the current model by carefully yok-
ing the gaze patterns of each artificial observer to a corresponding

individual infant, so that the average kinematic measures were the
same for each observer group.

A third advance is that we also simplified the architecture of
the model used to learn the COG sequences. In particular, our
previous model focused specifically on the process of visual explo-
ration, including a component in the model that simulated an
intrinsically motivated learner (i.e., an agent that is motivated
to improve its own behavior, rather than to reach an externally
defined goal). However, because the issue of intrinsic motivation is
not central to the current paper, we have stripped this component
from the model, resulting in a more direct and straightforward
method for assessing the relative learnability of the COG sequences
produced by each of the observer groups.

In the next section, we provide a detailed description of (1)
the procedure used to transform infants’ gaze data into COG
sequences, (2) the comparable steps used to generate the artifi-
cial observers’ gaze data and COG sequences, and (3) the training
regime employed to measure COG sequence learnability. In the
meantime, we briefly sketch the procedure here, followed by our
primary hypotheses and analytical strategy.

The infant gaze data were obtained from a sample of 3-month-
old infants who viewed the occluded-rod display illustrated in
Figure 1A. Fixation locations for each infant were acquired by
an automated eye-tracker. These locations were then mapped to
the corresponding spatial position and frame number from the
occluded-rod display, and a small (41 × 41 pixel) image sam-
ple, centered at the fixation location, was obtained for each gaze
point. Next, two sets of artificial gaze sequences were generated.
First, an image-saliency model was used to produce a sequence of
gaze points in which gaze direction is determined by bottom-up
visual features, such as motion or regions with strong light/dark
contrast (e.g., Itti and Koch, 2000). Second, in the random-gaze
model, locations were selected at random from the occluded-
rod display. Each of the artificial-observer models was used to
generate a set of COG sequences, with each sequence in the set
yoked to the timing and gaze-shift distance of a corresponding
infant.

Given our previous findings with the image free-viewing
paradigm, our primary hypothesis was that the COG sequences
produced by infants during the occluded-rod display would be
more easily learned by a set of SRNs than either of the two
artificial-observer sequences. We evaluated this hypothesis by

FIGURE 1 | Displays used to assess perceptual completion in infants: (A) occluded-rod (habituation) display, and (B) complete-rod and (C) broken-rod

test displays.
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assigning an SRN to each of the infants, and then training
each network simultaneously on the three corresponding COG
sequences (i.e., the infant’s sequence, plus the yoked image-
saliency and random-gaze sequences). Learning was implemented
in each SRN by presenting it with the three corresponding
COG sequences, one image sample at a time as input, and
then using a supervised learning algorithm to train the SRN to
produce as output the next image sample from the sequence.
We then assessed learnability by ranking the three observers
assigned to each SRN by mean prediction error after each train-
ing epoch. Given this measure, we predicted that infants would
not only have the highest average rank at the start of train-
ing (i.e., their COG sequences would be learned first by the
SRNs), but also that this difference would persist throughout
training.

In addition, we also probed the training process further by
exploring the effect of manipulating the context units on the per-
formance of the SRN. In particular, we implemented a “forgetting
function” in which the context units were reset at one of three
intervals (every 1, 2, or 5 COG training samples; for a related dis-
cussion, see Elman, 1993). In the most extreme condition, resetting
the context units after each COG sample enabled us to determine
if the network was learning exclusively on the basis of each current
COG sample – in which case, the 1-sample reset would have no
impact on performance – or alternatively, if the memory trace of
recent COG samples encoded within the recurrent pathway was
also being used as a predictive cue. Accordingly, we predicted that
resetting the context layer units would not only impair perfor-
mance of the SRN, but also that this interference effect would be
greatest for the infants’ COG sequences.

It is important to stress in the 2- and 5-sample reset conditions,
though, that this trace accumulates in a fashion that weights the
memory toward COG samples that are more distal in time (i.e.,
past COG samples are not weighted equally). For example, in the
5-sample case, the first COG sample in a wave of five is effec-
tively presented to the network as input (directly or indirectly)
four times: once as the first COG sample, and then four more
times as the trace of the sample cycles through the context units.
By this logic, the fourth COG sample in the same wave of five is
presented twice. Thus, the forgetting function provides a some-
what qualitative method for revealing whether or not sequential
or temporal structure is present in infants’ COG image samples,
but may not directly specify how those regularities are distributed
over time. We return to this issue in the discussion and raise a
potential strategy for addressing it.

STIMULI
OCCLUDED-ROD DISPLAY
During the collection of eye-tracking data (see below), the
occluded-rod display was rendered in real-time. In order to con-
vert this display into a sequence of still frames for the current
simulation study, it was first captured as a video file (AVI for-
mat, 1280 × 1024 pixels, 30 fps), and then parsed by Matlab
into still frames. A complete cycle of the rod’s movement, from
the starting position on the far right, to the far left, and then
back to the starting location, was extracted from the video and
resulted in 117 frames (∼3.5 s in real-time). Note that during

video presentation, the dimensions of the occluded-rod display
were 480 × 360 pixels, which was presented at the center of
the monitor, surrounded by a black border. This border was
subsequently cropped from the still-frame images, so that the
occluded-rod display filled the frame. The gaze data obtained
from infants were adjusted to reflect this cropping process; mean-
while, as we describe below, the simulated gaze data from the
image-saliency and random-gaze models were obtained by pre-
senting the cropped (480 × 360) occluded-rod displays to each
model.

OBSERVER GROUPS
Infants
Twelve 3-month-old infants (age, M = 87.7 days, SD = 12 days; 5
females) participated in the study. Infants sat on their parents’ laps
approximately 60 cm away from a 76 cm monitor in a darkened
room. Eye movements were recorded using the Tobii 1750 remote
eye tracker. Before the beginning of each trial, an attention-getter
(an expanding and contracting children’s toy) was used to attract
infants’ gaze to the center of the screen. As soon as infants fixated
the screen, the attention-getter was replaced with the experimen-
tal stimulus and timing of trials began. Each trial ended when
the infant looked away for 2 s or when 60 s had elapsed. Note
that all analyses described below were based on the eye-tracking
data acquired during each infant’s first habituation trial (i.e., the
occluded-rod display).

Image-saliency model
The saliency model was designed to simulate the gaze patterns of an
artificial observer whose fixations and gaze shifts are determined
by image salience, that is, by bottom-up visual features such as
motion and light/dark contrast. In particular, the 117 still frames
extracted from the occluded-rod display were transformed into a
set of corresponding saliency maps by first creating four feature
maps (tuned to motion, oriented edges, luminance, and color con-
trast, respectively) from each still-frame image, and then summing
the feature maps into a saliency map. The sequence of 117 saliency
maps was then used to generate a series of simulated fixations. We
describe each of these processing steps in detail below.

Feature maps. Each of the still-frame images was passed through
a bank of image filters, resulting in four sets of feature maps: one
motion map (i.e., using frame-differencing between consecutive
frames), four oriented edge maps (i.e., tuned to 0◦, 45◦, 90◦, and
135◦), one luminance map, and two color-contrast maps (i.e., red–
green and blue–yellow color-opponency maps). In addition, this
process was performed over three spatial scales (i.e., to capture the
presence of the corresponding features at high, medium, and low
spatial frequencies), by successively blurring the original image
and then repeating the filtering process [for detailed descriptions
of the algorithms used for each filter type, refer to Itti et al. (1998)
and Itti and Koch (2000)]. As a result, 24 total feature maps were
computed for each still-frame image.

Saliency maps. Each saliency map was produced by first nor-
malizing the corresponding feature maps (i.e., by scaling the
values on each map between 0 and 1), and summing the 24
maps together. For the next step (simulating gaze data), each
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saliency map was then downscaled to 40 × 30. These resulting
saliency maps were then normalized, by dividing each map by
the average of the highest 100 saliency values from that map.
Figure 2 illustrates a still-frame image from the occluded-rod
display on the left, and the corresponding saliency map on the
right.

Simulated gaze data. Next, 12 sets of simulated gaze sequences
were produced with the image-saliency model. Each set was yoked
to the gaze data from a specific infant, and in particular, four
dimensions of the infant and artificial-observer gaze sequences
were equated: (1) the location (i.e., gaze point) of the first fixation,
(2) the total number of fixations, (3) the duration of each fixa-
tion (i.e., dwell-time), and (4) the distance traveled between each
successive fixation (i.e., gaze-shift distance).

At the start of the simulated trial, the image-saliency model’s
initial gaze point was set equal to the location of the infant’s first
fixation. The model’s gaze point was then held at this location for
the same duration as the infant’s. For example, if the infant’s initial
fixation was 375 ms, the model’s gaze point remained at the same
location for 11 frames (i.e., 375 ms ÷ 33 ms/frame = 11 frames).
In a comparable manner, each gaze shift produced by the image-
saliency model was therefore synchronized with the timing of the
corresponding infant’s gaze shift.

Subsequent fixation locations were selected by the image-
saliency model by iteratively updating a fixation map for the
duration of the fixation. The fixation map represents the difference
between the cumulative saliency map (i.e., the sum of the saliency
maps that span the current fixation) and a decaying inhibition
map (see below). Note that the inhibition map served as an analog
for an inhibition-of-return (IOR) mechanism, which allowed the
saliency model to release its gaze from the current location and
shift it to other locations on the fixation map.

Each trial began by selecting the initial fixation as described
above. Next, the inhibition map was initialized to 0, and a 2D
Gaussian surface was added to the map, centered at the current
fixation point, with an activation peak equal to the value at the
corresponding location on the saliency map. The Gaussian surface
spanned a 92 × 92 pixel region, slightly larger than twice the size
of a single COG sample (see COG Image Sequences, below). Over

the subsequent fixation duration, activity on the inhibition map
decayed at a rate of 10% per 33 ms. At the end of the fixation, the
next fixation point was selected: (a) the fixation map was updated
by subtracting the inhibition map from the saliency map (nega-
tive values were set to 0), (b) the top 500 values on the saliency
map were chosen as potential target locations, and (c) the gaze-
shift distance between the current fixation and each target location
was computed. Finally, the target location with the gaze-shift dis-
tance closest to that produced by the infant (on the corresponding
gaze shift) was selected as the next fixation location (any ties were
resolved with a simulated coin-toss). The process continued until
the model produced the same number of fixations as the corre-
sponding infant (note that the sequence of 117 saliency maps were
repeated as necessary).

Random-gaze model
The random-gaze model was designed as a control condition,
to simulate the gaze pattern of an observer who scanned the
occluded-rod display by following a policy in which all locations
(at a given distance from the current gaze point) are equally likely
to be selected. Thus, the gaze sequences were produced by the
random-gaze model following the same four constraints as those
for the image-saliency model (i.e., number and duration of fix-
ations, gaze-shift distance, etc.), with the one key difference that
upcoming fixation locations were selected at random (rather than
based on image salience).

To help provide a qualitative comparison between typi-
cal gaze patterns produced by the three types of observers,
Figure 3 presents the cumulative scanplot from one of the infants
(Figure 3A), as well as the corresponding scanplots from the
image-saliency and random-gaze models that were yoked to the
same infant (Figures 3B,C, respectively).

SUMMARY STATISTICS
Prior to the training phase, we computed summary statistics for the
three models, in order to verify that the yoking procedure resulted
in comparable performance patterns for each yoked dimension.
Table 1 presents the mean summary statistics for the three observer
groups (with standard deviations presented in parentheses). Note
that the values presented in italics represent two of the four

FIGURE 2 | Illustration of one of the still-frame images from the occluded-rod display (A), and the corresponding saliency map (B).
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FIGURE 3 | Scanplot (sequence of fixation points) produced by one of the infants (A), together with the corresponding scanplots from the yoked

image-saliency (B) and random-gaze models (C).

Table 1 | Summary statistics as a function of observer group.

Fixation

duration

Saliency

captured

Revisit

rate

Fixation

dispersion

Gaze-shift

distance

Infant 339.38

(96.03)

0.66

(0.07)

0.23

(0.07)

78.55

(15.08)

59.20

(18.82)

Saliency 356.19

(95.47)

0.65

(0.03)

0.19

(0.11)

82.46

(18.68)

60.36

(18.44)

Random 356.19

(95.47)

0.47*

(0.05)

0.16

(0.08)

110.60*

(28.75)

59.21

(18.82)

*p < 0.01 (paired comparison vs. infant observer group). Standard deviation pre-
sented in parentheses; values in italics correspond to the two measures that
were yoked across the three observer models.

dimensions (i.e., fixation duration and gaze-shift distance) that
were systematically equated between observer groups. In general,
except where noted below, post hoc comparisons across the three
observer groups revealed no significant differences. The first col-
umn presents the mean fixation duration (in milliseconds) for the
infant, image-saliency, and random-gaze groups. The net differ-
ence between real and artificial observers was approximately 17 ms,
and was presumably due to the fact while the infant data were
measured continuously, the artificial observers were simulated in
discrete time steps of 33.3 ms.

The second column presents the mean saliency “captured”
by each model, that is, the degree to which each group’s fixa-
tions were oriented toward regions of maximal saliency in the
display. This was computed by projecting the gaze points pro-
duced by each of the observer groups on to the corresponding
saliency maps, and then calculating the average saliency for
those locations. Recall that values on the saliency maps were
scaled between 0 and 1; the average saliency values from each
group therefore reflected the proportion of optimal or maxi-
mal saliency captured by that group. There are two key results.
First, the saliency model achieved an average of 0.65 saliency,
indicating that – due to the constraint imposed on allowable
gaze-shift distance – the model did not consistently fixate the
most salient locations in the display. The second noteworthy find-
ing is that infants’ gaze patterns captured a comparable level of
saliency, that is, 0.66. As Table 1 notes, the average saliency
captured by the random observer group was significantly lower

than the infant and image-saliency groups [both ts(22) > 8.46,
ps < 0.001].

The third column presents the mean revisit rate for each
observer group. Revisit rate was estimated by first creating a null
frequency map (a 480 × 360 matrix with all locations initialized
to 0). Next, for each fixation, the values within a 41 × 41 square
(centered at the fixation location) on the frequency map were
incremented by 1. This process was repeated for all of the fixa-
tions generated by an observer, and the frequency map was then
divided by the number of fixations. For each observer, the max-
imum value from this map was recorded, reflecting the location
in the occluded-rod display that was most frequently visited (as
estimated by the 41 × 41 fixation window). The maximum value
was then averaged across observers within each group, providing a
metric for the peak proportion of fixations that a particular loca-
tion in the occluded-rod display was visited, on average. As Table 1
illustrates, a key finding from this analysis is that infants had the
highest revisit rate (23%), while the two artificial observer groups
produced lower rates.

The last two columns present kinematic measures of the gaze
patterns. First, dispersion was computed by calculating the cen-
troid of the fixations (i.e., the mean fixation location), then
calculating the mean distance of the fixations (in pixels) from the
centroid for each observer, and then averaging the resulting dis-
persion values for each group. As Figure, Table 1 indicates, infants
tended to have the least-disperse gaze patterns. Fixation dispersion
in the image-saliency observer group did not differ significantly
from the infant group, although it was significantly higher in the
random-observer group [t(22) = 3.63, p < 0.01]. Finally, the fifth
column presents the mean gaze shift distance (measured in pixels)
for each group. Because this measure was yoked across groups, as
expected, the artificial-observer groups produced mean gaze-shift
distances that were comparable to the infants’ mean distance.

COG IMAGE SEQUENCES
The final step, prior to training the model, was the process of
mapping each set of gaze patterns into a sequence of COG image
samples. This was accomplished by determining the frame number
that corresponded to the start of each fixation, projecting the gaze
point on to the resulting still-frame image, and then sampling a
41 × 41 pixel image, centered at that location. The dimensions of
the COG sample were derived from the display size and infants’
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viewing distance, and correspond to a visual angle of 1.8◦, which
falls within the estimated range of the angle subtended by the
human fovea (Goldstein, 2010). In order to facilitate the training
process, note that each of the COG samples was converted from
color (RGB) to grayscale.

MATERIALS AND METHODS
MODEL ARCHITECTURE AND LEARNING ALGORITHM
Recall that our primary hypothesis was that infants’ COG
sequences would be more easily learned by an SRN than the
sequences from the two artificial-observer models. To evaluate
this hypothesis, we trained a set of 3-layer Elman networks, with
recurrent connections from the hidden layer back to the input
layer (context units; Elman, 1990). In particular, this architecture
implements a forward model, in which the current sensory input
(plus a planned action) is used to generate a prediction of the
next expected input (e.g., Jordan and Rumelhart, 1992). The com-
plete model (including the training stimuli, network architecture,
and learning algorithm) was written and tested by the first author
(Schlesinger) in the Matlab programming environment.

The input layer of the SRN was composed of 2083 units, includ-
ing 1681 units that encoded the grayscale pixel values of the current
COG sample, 400 context units (which copied back the activ-
ity of the hidden layer from the previous time step), and two
input units that encoded the x- and y-coordinates of the upcom-
ing COG sample (normalized between 0 and 1). The input layer
was fully connected to the hidden layer (400 hidden units, i.e.,
approximately 75% compression of the COG sample), which in
turn was fully connected to the output layer (1681 units). The
standard logistic function was used at the hidden and output
layers to maintain activation values between 0 and 1; in addi-
tion, the bias terms were fixed to 0 for the hidden and output
units.

An individual training trial proceeded as follows: given the
selection of a COG sequence, the first COG sample in the sequence
was presented to the SRN. For this first sample, the activation of
the context units was set to 0.5. Activity in the network was prop-
agated forward, resulting in the predicted next COG sample. This
output was compared to the second COG sample in the sequence,
and the root mean-squared error (RMSE) was calculated. Next,
the standard backpropogation-of-error (i.e., backprop) learning
algorithm was used to adjust the SRN’s connection weights (i.e.,
training was pattern-wise). The activation values from the hidden
layer were then copied back to the input layer, and the second
COG sample was presented to the SRN. This process contin-
ued until the second-to-last COG sample in the sequence was
presented.

TRAINING REGIME
A total of 10 training runs were conducted. At the start of each
run, a single SRN was initialized with random connection weights
between 0 and 1, which were then divided by the number of incom-
ing units to the given layer (i.e., fan-in). This network was cloned
12 times, once for each of the infants. This duplication process
ensured that any subsequent performance differences between
SRNs during a run were due to the training samples unique to
each infant, rather than to the initialization procedure.

Accordingly, each of the 12 SRNs was paired with one of the
infants, and subsequently trained on the three COG sequences
associated with that infant: the selected infant’s sequence, as well
as the image-saliency and random-gaze sequences that were yoked
to the same infant. A single training epoch was defined as a sweep
through the three COG sequences. Order of observer type (i.e.,
infant, saliency, random) was randomized for each epoch. Pilot
data collection indicated that the SRNs reached asymptotic per-
formance, with a learning rate of 0.1, between 200 and 300 training
epochs. As a result, each training run continued for 300 epochs.

In order to evaluate our second hypothesis – that resetting the
activation of the context layer would have the largest interference
effect on the infants’ COG sequences – we “paused” training every
10 epochs to test each of the SRNs. During the testing phase,
learning was turned off and all connections were frozen in the SRN.
Next, the SRN was tested by presenting the three COG sequences,
four times each: (1) with recurrence functioning normally, and
(2–4) with the activity of the context units reset to 0.5 every 1, 2,
or 5 input steps, respectively.

RESULTS
Two sets of planned analyses were conducted. First, we converted
RMSE values into rank scores, and then compared the perfor-
mance of the 12 SRNs as a function of mean rank of each observer
group. In particular, this analysis focused on our predictions that
the COG sequences from the infant group would have the highest
mean ranking at the start of training, and that this difference would
persist throughout the training period. The second analysis exam-
ined the influence of resetting the context-layer units on the SRNs’
performance, which allowed us to indirectly measure the presence
of temporal dependencies in the COG sequences, between both
adjacent samples as well as those as many as five samples apart.

Figure 4 presents the RMSE produced by the 12 SRNs dur-
ing the 300 training epochs, as a function of the observer group
(i.e., infant, image-saliency, and random-observer models, respec-
tively). Note that these data are pooled over the 12 SRNs and the 10
training runs. In addition, the RMSE values presented in Figure 4
were those generated by the SRNs during the test phase, that is,
in which learning was turned off every 10 epochs. As a result,
these data reflect the performance of the SRNs while removing the
transient effect of testing order (i.e., recall that the order of the
observer groups during training was randomized across epochs).

There are two important trends suggested by Figure 4.
First, the RMSE values produced by the image-saliency group
remain consistently highest during training. Second, there is an
early “trade-off” between the infant and random-gaze groups,
which eventually results in a stable difference, favoring the
infant group. In order to determine whether these trends
were statistically reliable, we first converted the RMSE val-
ues into ranks. In particular, for each epoch, the RMSE for
the three observer groups were sorted in ascending order, and
assigned the corresponding rank (i.e., 1, 2, or 3). As before,
ranks were then averaged over the 12 SRNs and 10 training
runs.

Figure 5 presents the rank-transformed performance data.
(Note that in describing these data, we adopt the convention that
the rank of 1 is treated as “highest” while the rank of 3 is the

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 441 | 6

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


Schlesinger et al. Prediction-learning in infants

FIGURE 4 | Mean prediction error (MRSE per pixel) over the 300 training epochs, as a function of the three observer groups.

FIGURE 5 | Mean rank scores over the 300 training epochs, as a function of the three observer groups.

“lowest.” In other words, a higher average rank corresponds to a
lower RMSE). In order to compare the three observer groups, a
2-way ANOVA was conducted with epoch and observer group as
the two factors. As expected, there was a main effect of observer
group [F(2,357) = 124.24, p < 0.001]. We examined this effect
with planned paired comparisons between the three groups (using
Bonferroni corrections), which also confirmed our prediction:
specifically, the infant observer group had significantly higher
overall mean rank than the image-saliency and random-gaze
groups. However, these findings were qualified by a signifi-
cant epoch × observer group interaction [F(58,10353) = 6.48,
p < 0.001]. As Figure 5 indicates, near the start of training, the
infant and random-gaze groups had similar ranks; in contrast,
a large, stable difference between the two groups emerged after
approximately 50 epochs.

In order to examine this interaction, we conducted a post hoc
analysis by first dividing training time into two phases (0 to 50 and

60 to 300 epochs). We then repeated the previous 2-way ANOVA
for each phase (i.e., epoch × observer group), including compar-
isons between the three observer groups. This analysis revealed
that while there was no significant difference between the infant
and random-gaze groups during the first 50 epochs (p = 0.64),
the infant group averaged a significantly higher rank than the
random-gaze group during the remaining 250 epochs (p < 0.005).
In particular, these results confirm our prediction that the infant
observer group would be ranked highest at the start of training,
albeit after an initial period of equivalent performance in two of
the three groups. In addition, the stability of this pattern for the
remainder of the training phase also provides support for our pre-
diction that the infant observer group would maintain the highest
rank throughout training.

The second set of analyses focused on the role of the context
layer in the SRN architecture, and more specifically, on the ques-
tion of whether periodically resetting the activity of this layer
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during training would disrupt performance. In order to address
this question, recall that during each test phase, each of the
SRNs was not only tested under canonical conditions (e.g., full
recurrence; see Figure 4), but also under three conditions in
which the context layer was reset (i.e., all values were set to 0.5)
after every 1, 2, or 5 training samples. Because it was antici-
pated that resetting the context layer would produce an increase in
prediction errors, RMSE difference scores were therefore com-
puted between each of the reset conditions and the canonical
condition. These difference scores were then transformed into
percent-change scores, relative to the canonical condition (that is,
percent increase in the RMSE due to resetting the context layer).
Figure 6 presents the resulting percent-change values for each
of the observer groups, within the three reset conditions (i.e.,
6A = every sample, 6B = every two samples, and 6C = every
five samples, respectively).

There are three primary findings from this analysis. First,
a consistent pattern observed across the three observer groups
and reset conditions is that the percent change of the RMSE
starts near 0 at the beginning of training. However, for all
groups and conditions, this value quickly increases, reflecting a
progressively greater impact of resetting the context layer over
training time. For example, Figure 6A illustrates that by the
end of training, resetting the context layer after each COG sam-
ple results in approximately a 200% increase in the RMSE, on
average for the three observer groups. Second, there is a pos-
itive association between the reset frequency and the percent
increase in RMSE. In other words, resetting the context layer
after every sample produced a larger interference effect than
resetting every two samples, and likewise for resetting every five
samples.

Third, we conducted a 2-way ANOVA for each of the reset
conditions, again with epoch and observer groups as the two fac-
tors. This comparison revealed a significant epoch × observer
group interaction for all three reset conditions [all Fs(58,
10353) > 3.87, ps < 0.001]. In general, as Figure 6 illus-
trates, this interaction reflects the tendency for percent-change
scores to begin near 0 for each of the observer groups, and
then subsequently increase at different rates over training time.
We pursued this interaction by dividing training time into three
blocks of epochs (i.e., 0–100, 100–200, and 200–300 epochs),
and then conducting a simple-effects test of observer group
for each of the three blocks. Two consistent findings emerged
from this test. First, across each of the three training blocks
and two of the three reset conditions, the percent increase of
the RMSE in the infant group was significantly higher than
in the random-gaze group [all ts(238) > 2.79, ps < 0.02].
The only exception to this result was in the condition where
the context layer was reset every five samples, during the final
block of epochs; in this case, the infant and random-gaze
groups did not significantly differ. Second, a significant differ-
ence between the infant and saliency groups was not present
during the first two blocks of epochs (i.e., through epoch 200).
However, by the third block of epochs, the percent increase in
RMSE in the infant group was significantly higher than in the
saliency group, for all three reset conditions [all ts(238) > 2.38,
ps < 0.05]. Taken together, these findings collectively support

our prediction that resetting the context-layer activation values
would have the largest interference effect on the infants’ COG
sequences.

DISCUSSION
The current simulation study focused on two goals. First, we
sought to demonstrate that our previous gaze-sequence learnabil-
ity findings, from an infant free-viewing task (Schlesinger and
Amso, 2013), would generalize and extend to a task that was
specifically designed to study object perception in young infants.
Second, we not only implemented several key improvements in
our model, but also modified the training and testing procedure
to allow us to assess whether learnability of the infants’ COG
samples was due, at least in part, to the presence of sequential
dependencies between both adjacent and non-adjacent training
samples.

The results were consistent with each of our four hypothe-
ses. First, we predicted that infants’ COG sequences would be
learned first by the 12 SRNs. We assessed this prediction by
converting each observer group’s error scores into ranks and
then analyzing the respective ranks over 300 epochs of training
time. As we predicted, the infant group eventually established a
significant advantage over the other two observer groups. Unex-
pectedly, however, this advantage did not appear at the onset of
training. Instead, the average ranks of the infant and random-
gaze groups were comparable for the first 50 epochs of training.
One potential explanation for this early similarity of perfor-
mance in the two observer groups is that there was a higher
initial “learning cost” associated with the infant group, due to
the (presumed) presence of temporal dependencies in their COG
sequences, which ostensibly required additional time for the SRNs
to detect and exploit (through the context layer). Second, we
also predicted that this advantage would persist and remain sta-
ble across the remaining time. Again, the results supported our
prediction.

Our third and fourth predictions focused on whether the suc-
cess of the SRN architecture in learning the infants’COG sequences
benefited from the (presumed) presence of temporal or sequen-
tial dependencies embedded within the infants’ COG training
samples. Luckily, the use of the random-gaze model provides a
critical role in addressing this question, as the gaze sequences from
this model were specifically produced with a stochastic procedure
(although it should be noted that the selection of each gaze point
was constrained by a fixed gaze-shift distance rule). As a result, we
can thus assume that there were no a priori regularities or depen-
dencies within the random-gaze model’s COG sequences, other
than those broadly present in the display itself (e.g., the baseline
probability of fixating the background, or the occluding screen, at
random).

We therefore predicted that disrupting information flow within
the recurrent pathway of the network by periodically resetting the
context layer would increase the overall errors produced by the
SRNs. Indeed, across all three observer groups we observed sig-
nificant increases in the SRN prediction errors when the recurrent
layer was reset. Our last prediction was that the interference effect
would be greatest for the infants’ COG sequences, and as Figure 6
illustrates, this prediction was confirmed as well.
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FIGURE 6 | Percent change in the MRSE during testing of the three observer groups, while resetting the recurrent layer units after every sample (A),

every other sample (B), and every five samples (C).
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Further inspection of Figure 6 may offer three additional
insights. First, as we suggested above, the gaze sequences pro-
duced by the random-gaze model should include minimal (if
any) sequential structure. Nevertheless, note that – like the other
two observer groups – the interference effect increased with
training time in the random-gaze group. This trend provides a
statistical baseline for estimating the contribution of the con-
text layer for prediction learning on the current task, as the
training sequences from the random-gaze model were osten-
sibly sequentially independent. We can therefore estimate the
presence of any additional structure embedded within infants’
COG sequences by subtracting the RMSE change values pro-
duced by the random-gaze model. For example, in the first reset
condition (i.e., reset after every sample) and pooling over train-
ing time, the overall difference in RMSE change between the
infant and random-gaze groups is 42%. This value provides an
important clue toward understanding the function of infants’
object-directed gaze behavior, as it demonstrates that infants’
gaze sequences are significantly more structured than sequences
produced by chance, and that this embedded sequential struc-
ture also provides a measurable advantage to an active observer
that is learning to forecast or predict the content of upcoming
fixations.

An additional insight offered by manipulating the context layer
is reflected by the regular order of performance observed across
the three observer groups. In particular, note that the interference
effect was consistently lowest in the random-gaze group, highest
in the infant group, and midway between the two in the image-
saliency group. This finding suggests that the simple strategy of
orienting toward relatively high-saliency regions in the occluded-
rod display is sufficient to generate statistically reliable temporal
structure in the COG sequences.

Finally, a third insight suggested by these findings is that image-
saliency may provide, at best, a partial account for how infants’
gaze patterns are structured over time and space. In particu-
lar, our previous work has demonstrated that a saliency-based
model captures several global-level features of infants’ gaze pat-
terns, such as the frequency of fixations toward the rod segments,
as well as individual differences in the rate of rod fixations between
infants (Amso and Johnson, 2006; Schlesinger et al., 2007, 2012).
In addition, our current model provides two additional pieces
of evidence that also implicate the role of image saliency. First,
as Table 1 indicates, the infant and image-saliency groups fix-
ated regions of the occluded-rod display that were on average
nearly equal in salience. Second, as Figure 6 illustrates, reset-
ting the context layer had a comparable effect on the infant and
image-saliency groups during the first 75–80 epochs of train-
ing (the same pattern was also consistent across the three reset
conditions).

However, after approximately 80 epochs, the interference effect
continued to increase at a faster rate in the infant group. One
potential interpretation for this pattern is that, due to similar levels
of saliency in the infants’ and image-saliency models’ COG sam-
ples, the SRNs “focused” during early learning on saliency-related
features in the input (e.g., luminance contrast) as a predictive
cue. In contrast, the random-gaze model fixated salient locations
less frequently (i.e., 42% of maximal salience, vs. 66 and 65%

in the infant and image-saliency models, respectively), and as a
result, recurrent feedback in the SRN had less impact on pre-
diction learning for the sequences from this observer model. If
this reasoning is correct, it suggests that the subsequent perfor-
mance split between the infant and image-saliency models was
presumably due to additional temporal structure – beyond that
provided by saliency – in the infants’ sequences, which the SRNs
continued to learn to detect and exploit. To put the point con-
cisely: while infants and the image-saliency model fixated (on
average) equally-salient regions in the occluded-rod display, we
are proposing that it was the particular temporal order in which
infants scanned salient regions of the display that provided an addi-
tional predictive cue to the SRNs. We are currently exploring
computational strategies for teasing apart these spatial and tem-
poral cues, and isolating their influence on the prediction-learning
process.

Two key issues remain unaddressed by our work thus far. First,
it is important to note that our use of the SRN architecture, as well
as our manipulation of the context layer, provide a somewhat indi-
rect method for identifying sequential structure in infants’ COG
samples. In general, this strategy tells us that temporal structure
is present and it also provides a method for quantifying the inter-
ference caused by periodically resetting the context units, but it
does not directly identify the visual features detected by the SRN,
not does it specify how variation in these cues over time (i.e.,
correlations between successive COG samples) improves the out-
come of sequence learning. An additional limitation of the reset
method, which we noted in the introduction, is that the sam-
ples that are processed before a reset occurs do not contribute
equally to the memory trace that accumulates in the recur-
rent pathway (i.e., distal samples are weighted more than recent
samples).

There are several strategies available to address these issues.
For example, alternative analytical methods (e.g., principal-
component or clustering analysis of the hidden layer activations)
as well as alternative modeling architectures and learning algo-
rithms (e.g., Kohonen networks, Kalman filters, etc.) may provide
additional insights. We are also currently exploring the strategy
of constructing artificial gaze sequences in which we strictly con-
trol the statistical dependencies over time (e.g., alternating gaze
between 2, or 3, or 4 narrowly defined regions in an image). Ideally,
this will allow us to examine the influence of resetting the context
layer versus learning/detecting temporal dependencies that vary
in their duration over time. A related limitation of the model-
ing strategy we have employed here is that the SRNs were trained
over multiple repetitions of the same COG sequences. In particu-
lar, this repetition provides an important learning cue to the SRNs,
independent of the temporal structure embedded within the COG
sequences. One way to address this issue is to employ a “leave-out”
training regime, in which a subset of training patterns are set aside
and reserved for testing the model.

Second, we should also note that our current simulation study
focused exclusively on infants’ first trial during the perceptual-
completion task. An open question is whether infants’ scanning
patterns change systematically over subsequent trials (e.g., do
rod fixations increase?), and if so, what effect if any will such
changes have on the predictability of the COG sequences that are
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produced during later trials? Our intuition is that if infants’ gaze
patterns during later trials are less variable (e.g., as estimated by our
dispersion measure), their COG sequences will become more pre-
dictable (due to greater similarity between sequences). In addition,
recall that after habituating to the occluded-rod display, infants
then view the solid-rod and broken-rod test displays (Figure 1).
Therefore, a related question is whether predictability of the COG
sequences will increase or decrease during the test trials, and in par-
ticular, whether it will vary across the two display types. Answering
these questions is essential to understanding the role of visual
prediction-learning during the development of object perception.

We now return to the issue of early object-perception devel-
opment in young infants. Our work has not only implicated the
role of active visual scanning as an essential skill for object per-
ception (Johnson et al., 2004; Amso and Johnson, 2006), but also
demonstrated how this skill can emerge developmentally through
interactions between the parietal and occipital cortex (Schlesinger
et al., 2007). Recent work has also implicated visual prediction-
learning as a complementary mechanism that may also support
object perception (Schlesinger et al., 2011; Schlesinger and Amso,
2013). Our current findings help to integrate these ideas into a
coherent developmental mechanism, by not only demonstrating
that sequential structure is present within infants’ time-ordered
gaze patterns, but also that this structure is manifest across both
complex, naturalistic displays as well as the relatively simplified
ones that are used to investigate object perception in the lab-
oratory. An additional important insight from both our recent
behavioral and modeling work is that perceptual salience is likely
a necessary, though not sufficient cue for driving visual scanning
and object exploration in young infants (Schlesinger and Amso,
2013; Amso et al., 2014). We are optimistic that future work on
this question will help to identify the other cues and sources of
temporal structure that infants are learning to detect and exploit.

Finally, we conclude by noting that our modeling approach has
the potential to offer two important innovations for the study of
perceptual development in infants. First, our current strategy is
to analyze infants’ COG sequences offline, that is, after they have
been produced. Thus, one of our long-term goals is to design an
architecture that can accurately forecast infants’ upcoming fixa-
tions before they are produced. One application of this forecasting
technique would then be to manipulate the features or properties
of the gaze destination before the infant gazed at that location,
as a way of gauging their sensitivity to those features (i.e., a kind
of gaze-contingent change-blindness paradigm). Second, we have
previously observed variation across infants at the same age with
visual displays such as the perceptual-completion task (e.g., Amso
and Johnson, 2006). We are now excited to see if infants’ perfor-
mance on the perceptual-completion task will correlate with the
relative learnability of the COG sequences they produce during
the occluded-rod display, which would provide further support for
the idea that individual differences in information pick-up have a
fundamental effect on the development of object perception.
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