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Chapter 2
Mechanisms of Statistical Learning 
in Infancy

Scott P. Johnson

Abstract Statistical learning is the process of identifying patterns of probabilistic 
co-occurrence among stimulus features, essential to our ability to perceive the world 
as predictable and stable. Research on auditory statistical learning has revealed that 
infants use statistical properties of linguistic input to discover structure that may facili-
tate language acquisition. More broadly, statistical learning operates across sensory 
modalities and across species. Research on infants’ visual statistical learning has 
revealed that statistical learning develops over time, yet the mechanisms (including 
developmental mechanisms) underlying infant performance remain unclear. This 
chapter examines competing models of statistical learning and how learning might be 
constrained by limits in infants’ attention, perception, and memory.

The means by which humans acquire and represent knowledge is fundamental to 
cognitive science, and a central question asked by developmental psychologists 
concerns how infants learn so much in so little time without explicit instruction. For 
example, the rapidity and apparent ease with which infants and young children 
understand and produce speech, recognize faces, interpret others’ mental states, 
detect violations of physical laws governing object properties, and discriminate dif-
ferent numbers of items have led some theorists to suggest that innate cognitive 
mechanisms—independent of learning and experience—provide the infant with 
some knowledge in each of these domains (Chomsky, 1965; Johnson & Morton, 
1991; Leslie, 1997; Spelke, 1990; Wynn, 1992). Yet such views may neglect the role 
of environmental structure in guiding development, and studies of infant statistical 
learning (SL), the focus of this chapter, can help shed light on this issue. Statistical 
learning (SL) is a set of processes for learning stimulus features, objects, and events 
from distributional information over space and time: simple associations, probabi-
listic correspondence, frequencies, spatial positions, and order in sequence. SL 
contributes to segmentation of continuous information (such as speech) and the 
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formation of representations of units in time and space, thus helping to shape cogni-
tive development (Frost, Armstrong, Siegelman, & Christiansen, 2015; Siegelman 
& Frost, 2015), and it is an important part of language acquisition (see Chap. 4).

In this chapter, I discuss research efforts to discover the nature of SL in infancy, 
the kinds of statistical structure that infants are able to learn, the impact of different 
testing methods on infant learning, implications of infant SL for cognitive develop-
ment and developmental disabilities, and, finally, mechanisms underlying statistical 
learning in infancy. As I will try to make clear, the importance of statistical learning 
for understanding cognitive development, language acquisition in particular, has 
become increasingly evident in the 20+ years since publication of the first paper 
describing SL in infants (Saffran, Aslin, & Newport, 1996). Yet much remains 
unknown about the foundational processes and mechanisms of SL in infancy.

 Statistical Learning in Infancy

Research on detection of structure in complex input sequences has a considerable 
history (e.g., Gibson & Gibson, 1955; Reber, 1967). It has long been known that 
adult learners can detect patterns in the absence of explicit (articulable) knowledge 
(Reber, 1989), raising questions of learnability of complex sequences by nonverbal 
populations. SL in infants was first reported by Saffran et al. (1996) with a head-turn 
procedure. Eight-month-old infants listened to a continuous stream of computer- 
generated speech for 2 minutes, followed by a test phase during which segments of 
the familiarized speech stream, now separated by brief pauses, alternated with seg-
ments whose order was scrambled or whose parts had co-occurred relatively infre-
quently in the training set. One study, for example, familiarized infants with the 
pseudo-words tupiro, golabu, padoti, and bidaku in random order and with no 
pauses or immediate repetitions (e.g., tupirogolabupadotibidakugolabutupirobida-
kupadotitupiro…). The test phase involved two of the four original “words” (e.g., 
tupiro, golabu) and two “nonwords” (e.g., dapiku, tilado) formed from a random 
assembly of syllables; words and nonwords were separated by a 500 ms gap. Infants 
in a second experiment heard words alternating with “part-words” formed from the 
last syllable of a word combined with the first two syllables of a different word (e.g., 
bupado, kugola). Discrimination of words from nonwords and part-words was eval-
uated during the test phase by recording look durations toward a flashing light that 
accompanied repeated presentation of test stimuli, on the right or left side of a test-
ing chamber, on the assumption that interest in the sound sequences could be opera-
tionalized as attention in the direction of the light. Infants in both experiments 
exhibited increased interest in the novel items (nonwords and part-words).

How were infants able to parse the speech stream into coherent words, recognize 
them when heard in isolation, and discriminate them from the part- and nonwords? 
One possibility is that infants learned words from differences in transitional prob-
abilities (TPs) between adjacent syllables, because there were no other cues to seg-
mentation, such as pauses and prosody, that typically mark word and phrase 
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boundaries in real-world speech (Fougeron & Keating, 1997; Wightman, Shattuck- 
Hufnagel, Ostendorf, & Price, 1992). TP is a statistical measure that describes the 
predictability of adjacent items in an array or sequence (Miller & Selfridge, 1950; 
the TP of successive element XY is defined as probability of Y|X = frequency of 
XY/frequency of X). In the Saffran et al. (1996) study, TPs within words such as 
tupiro were always 1.0, meaning tu perfectly predicted pi; in turn, pi perfectly pre-
dicted ro (see Fig. 2.1). TPs between words, however, were lower, averaging 0.33. 
This is because ro (in tupiro) was sometimes followed by go (in golabu), sometimes 
by pa (in padoti), and sometimes by bi (in bidaku). Thus nonwords and part-words 
heard during the test phase such as dapiku and bupado had lower TPs between syl-
lables than words such as tupiro and padoti. The Saffran et al. results imply that 
infants detected the TP differences in the test stimuli and preferred to listen to the 
low-TP stimulus owing to its violation of word boundaries.

But there is an alternative explanation: Words in the familiarization stimulus 
were heard 3× more often than nonwords, and part-words were never heard, and so 
it is possible that infants preferred nonwords and part-words simply because they 
were unfamiliar, not due to lower TPs. To address this possibility, Aslin, Saffran, 
and Newport (1998) tested 8-month-olds with a “frequency-balanced” design in 
which the word and part-word heard at test were presented the same number of 
times during familiarization. TP differences, however, were the same as those in the 
Saffran et al. (1996) study. Infants showed increased interest in the part-word at test 
relative to the word, replicating the Saffran et al. results and providing evidence that 
segmentation and learning were based on TPs, not simple frequencies of syllables 
or words. TP differences between syllables, therefore, seem to facilitate the learning 
of sequence structure by signaling boundaries and units in an otherwise uninter-
rupted stream of items.

More broadly, SL operates across sensory modalities and across species. In 
human adults, SL participates in fundamental perceptual and cognitive functions 
including visual search, object perception, motor planning, and event prediction 
(Baker, Olson, & Behrmann, 2004; Fiser & Aslin, 2002a; Hunt & Aslin, 2001; Turk- 
Browne, Scholl, Johnson, & Chun, 2010). Animal species learn statistically 

Fig. 2.1 Schematic description of how transitional probabilities between syllables mark word 
boundaries
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 structured speech streams (e.g., Hauser, Newport, & Aslin, 2001; Toro & Trobalón, 
2005), and human infants parse streams of musical tones based on statistical prob-
abilities (Saffran, Johnson, Aslin, & Newport, 1999).

Experiments in my lab (Kirkham, Slemmer, & Johnson, 2002) provided the first 
demonstration of infants’ SL in visual sequences with an experiment in which 
infants were habituated to a stream of looming colored shapes organized in pairs 
defined by TPs. (Habituation is defined as a decrement in looking across trials 
according to a predetermined criterion, e.g., a decline of 50% or more during four 
successive trials relative to the first four trials.) TPs within pairs were 1.0, and TPs 
across pairs were 0.33 (see Fig. 2.2). Each shape had a unique color and loomed 
from about 4 to 24 cm across in 1 s, with no pauses to mark pairs. Following habitu-
ation, infants viewed two test sequences with the same shapes: a “structured” 
sequence, defined by the same TPs as those in the habituation stimulus, and a pseu-
dorandom sequence (no shape repetitions). Infants at 2, 5, and 8 months looked 
reliably longer at the random sequence, interpreted by Kirkham et al. as showing 
sensitivity to the statistical properties of the input—the TPs defining shape pairs in 
the habituation sequence—and noted when these statistics were violated. Infants at 
all three ages showed a reliable novelty preference for the random pattern, with no 
significant age differences aside from longer looking in general by the young-
est group.

My colleagues and I then asked if visual SL may be available at birth with a 
replication of the Kirkham et al. (2002) methods, modified to suit newborns’ limited 
color vision with the use of monochromatic stimuli (Bulf, Johnson, & Valenza, 
2011). Newborn infants provided no evidence of discriminating random from struc-

Fig. 2.2 Schematic depiction of habituation and test displays testing for visual statistical learning 
in infants (Kirkham et al., 2002)
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tured six-item sequences. We reasoned that three pairs of shapes (a high-demand 
condition; e.g., ABCDEFCDABEFABCDABEF…) might overwhelm newborns’ 
ability to track probabilities. This hypothesis was addressed with a two-pair, low- 
demand condition (e.g., ABCDCDABCDABABCDAB…). We observed a novelty 
preference for the random sequence in the low-demand condition, as did the older 
infants observed by Kirkham et al. who were tested with a high-demand condition. 
Thus the Bulf et al. study provides evidence that visual SL may be constrained by 
newborns’ limited cognitive resources, perhaps preventing identification of relevant 
visual information necessary to detect statistical structure.

The Bulf et  al. (2011) and Kirkham et  al. studies (2002) documented young 
infants’ ability to detect statistical information in sequences of discrete, looming 
shapes. By 8 months, infants detect probabilistic patterns in spatiotemporal visual 
sequences in which shapes appeared in  locations defined by TPs of 1.0 or 0.33 
(Kirkham, Slemmer, Richardson, & Johnson, 2007), and by 9  months, infants 
encode the underlying spatial statistical structure of multiple-element scenes in 
which shapes were arranged in groups defined by conditional probabilities among 
individual items (Fiser & Aslin, 2002b). These results led to claims of a domain- 
general SL device that is available early and operates across modalities, across 
time and space, and across species, suggesting that SL might be a predisposed, 
general associative mechanism (Kirkham et  al., 2002). This hypothesis is sup-
ported by reports of SL and discrimination of visual and linguistic sequences in 
newborns (Bulf et al., 2011; Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 
2009), constituting evidence for sensitivity to statistical information at birth in at 
least two modalities (vision and audition). SL is now a central feature of recent 
theories of human perception, cognition, and development (e.g., Aslin & Newport, 
2012, 2014; Hasson, 2016; Krogh, Vlach, & Johnson, 2013; Thiessen, 2016; Turk-
Browne, 2012).

 Kinds of Statistical Structure Infants Are Able to Learn

As noted previously, early studies of SL were aimed largely at questions of (a) 
whether infants might use SL to segment continuous speech into discrete units 
(Aslin et al., 1998; Saffran et al., 1996) and (b) the possibility that infants’ SL might 
be a domain-general learning mechanism (Kirkham et  al., 2002; Saffran et  al., 
1999). These studies examined SL with methods involving a learning (familiariza-
tion or habituation) phase with streams of unsegmented auditory or visual sequences, 
followed by a test phase probing for recognition of clusters of items that were either 
high or low in TPs. Results were taken to indicate that SL in infancy was domain- 
general and innate: that is, SL was proposed to operate across multiple kinds of 
sensory inputs and available from birth (Kirkham et al., 2002). Yet only the Aslin 
et al. study was designed to rule out other kinds of statistical information, such as 
frequency, in favor of TPs. The Kirkham et al. study did not test for infants’ TP 
learning or segmentation: Instead, infants were tested for simple discriminations of 
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TP-structured sequences vs. pseudorandom sequences. This kind of discrimination 
was later discovered to occur even without a learning phase: Five-month-olds were 
tested with two six-shaped visual sequences, seen in alternation, that either were 
ordered randomly or followed the statistical structure described previously. 
Interestingly, the infants looked longer at random vs. structured sequences of visual 
shapes, even without prior familiarization or habituation (Addyman & Mareschal, 
2013), thus demonstrating a spontaneous preference for random sequences that 
does not require prior experience or learning. This implies that infants in the 
Kirkham et al. and Bulf et al. (2011) experiments did not necessarily learn anything 
during the experiment, calling into question the likelihood that SL operates from 
birth and undergoes little developmental change in infancy.

The Addyman and Mareschal (2013) results also imply that young infants can 
discriminate sequences solely from ordinal information—the orderings of items. 
Ordinal information, like TP information, is a kind of statistic, but recognition of 
ordinal violations may be less demanding than recognition of TP violations, espe-
cially when infants are also required to segment an input stream into units. Consistent 
with this possibility, infants as young as 3 months were reported to identify viola-
tions of serial order in audiovisual sequences (Lewkowicz, 2008); in contrast, 4.5- 
and 5-month-olds, but not younger infants, segmented visual sequences from TP 
differences (Marcovitch & Lewkowicz, 2009; Slone & Johnson, 2015). These stud-
ies highlight an important distinction between discrimination of different sequences 
based on statistical information and learning statistical information to segment 
sequences of items into clusters or units. The studies also highlight the distinction 
between different statistics that might be identified and/or learned. Furthermore, the 
Addyman and Mareschal results are important in demonstrating that infants’ prefer-
ences for items in sequence might stem from differences in complexity (cf. Kidd, 
Piantadosi, & Aslin, 2012, 2014; Tummeltshammer & Kirkham, 2013).

Other kinds of inputs have been examined in infant SL tasks. For example, by 
11 months, infants can learn probabilistic sequences of items appearing in predict-
able spatial locations, and 8-month-olds can learn spatiotemporal sequences when 
item location combines with color and shape cues (Kirkham et al., 2007; cf. Sobel 
& Kirkham, 2006; Tummeltshammer & Kirkham, 2013); 5-month-olds tested 
under identical conditions did not appear sensitive to spatial information for the 
sequence. Infants at 8 months also were reported to learn predictable co-occur-
rences of items in visual arrays, akin to TPs between items in sequence (Fiser & 
Aslin, 2002b), and at 9 months, infants’ SL of object features in visual arrays was 
facilitated by a social cue: a woman seen to be looking in the location where a 
coherent configuration was displayed (Wu, Gopnik, Richardson, & Kirkham, 
2011). Also, other cues to segmentation that are present in real-world speech, such 
as prosody (Thiessen & Saffran, 2003) and word length (Lew-Williams, Pelucchi, 
& Saffran, 2011; Lew- Williams & Saffran, 2012), interact with, and constrain, SL 
of speech sounds.

Finally, there have been claims that infant SL has an important role in develop-
ment of abstract “rule learning,” a kind of pattern learning involving identification 
of simple reduplicative patterns and generalization of the pattern to new items 
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(e.g., Gerken, 2006; Marcus, Vijayan, Rao, & Vishton, 1999), and an important 
foundation for analogical reasoning (see Chap. 5). Infants’ learning and generaliza-
tion of simple abstract rules in sequential patterns were first investigated by Marcus 
et al. (1999), who exposed 7-month-old infants to strings consisting of computer- 
generated speech. In their first experiment, strings followed either an “ABA” pattern 
(e.g., gah tee gah, nee lah nee) or an “ABB” pattern (e.g., gah tee tee, nee lah lah). 
A and B items were separated by 250 ms of silence, strings by 1 s of silence. The 
speech stream was accompanied by a flashing light, mounted centrally in the testing 
chamber. After 2 minutes of continuous repetitions of one of these two familiariza-
tion patterns, the infants received trials of the same (familiar) pattern instantiated by 
different phonemes (e.g., woh fei woh, dee koh dee) and the second (novel) pattern 
on alternating trial, from a speaker located either to the left or right of the infant. 
Each kind of test stimulus was also accompanied by a flashing light, located either 
left or right, and learning was operationalized in terms of differences in looking 
time toward the light when the word or part-word was heard. The infants exhibited 
a reliable preference for the novel pattern, a result that extended to a test of ABB vs. 
AAB. The balance of phonetic features across familiarization and test stimuli ruled 
out the possibility that performance was based on learning sequences of low-level 
cues (such as voiced vs. unvoiced consonants). Importantly, the positive outcome of 
the ABB/AAB comparison obviated an account based on learning a simple redupli-
cation pattern (i.e., adjacent repetition) without respect to its place in sequence (i.e., 
initial/final edge position).

The Marcus et al. (1999) task bears superficial similarities to the Saffran et al. 
(1996) task: Infants listened to a structured speech stream for 2 minutes, and they 
were tested for recognition of the underlying pattern using a head-turn method to 
generate preferences for a flashing light on one vs. the other side of a testing cham-
ber. Yet there is a vital difference in what is tested in these two paradigms. In SL 
tasks such as the Saffran et al. study, infants are asked to segment a speech stream 
into units that are bounded by dips in TPs: that is, the words heard at test (now seg-
mented) had higher internal TPs than nonwords or part-words. In abstract rule- 
learning tasks such as the Marcus et al. study, in contrast, infants are not required to 
segment the input (it is already segmented into units) nor are they required to recog-
nize correspondences among items, learned during familiarization, to the same 
items at test. This is because no items from familiarization were heard at test. 
Instead, infants were required to learn an abstract pattern that, as noted previously, 
was independent of surface features (such as vowels and consonants).

Nevertheless, there have been proposals for a common mechanism supporting 
infant SL and abstract rule learning (see Chap. 5 for additional discussion), per-
haps because (a) language experience facilitates both SL (e.g., Saffran & Wilson, 
2003) and abstract rule learning (Marcus, Fernandes, & Johnson, 2007), (b) sim-
ple connectionist models can explain both sets of results (e.g., Christiansen & 
Curtin, 1999), (c) simple reduplications may comprise a “perceptual primitive” as 
a basis for pattern extraction (e.g., Gerken, Dawson, Chatila, & Tenenbaum, 2015; 
Gómez & Gerken, 2000), or (d) abstract categories can arise from purely statisti-
cal input (Aslin & Newport, 2012, 2014; see Reeder, Newport, & Aslin, 2013 for 

2 Mechanisms of Statistical Learning in Infancy



18

evidence from adults). However, to my knowledge, there are no reports of any 
direct demonstrations in infants that SL and abstract rule learning stem from a 
single learning mechanism. Indeed, experiments in my lab designed to test SL and 
abstract rule learning from identical four-item audiovisual sequences found that 
11-month-olds could learn about specific items and their positions in sequence—
that is, statistical information, in this case order of items in a series. In contrast, 
the infants did not appear to learn a simple reduplication—that is, an abstract rule 
that was independent of surface features (Schonberg, Marcus, & Johnson, 2018; 
see Fig. 2.3).

In summary, studies of SL in infancy have tended to focus on infants’ learning of 
TPs in segmentation tasks. Other kinds of statistical information are also available 
(ordinal information, frequency, repetition, linguistic cues), but their roles in seg-
menting and learning, and their interactions with TPs between stimulus features as 
contributions to learning, are not well understood at present.

Fig. 2.3 Schematic depiction of stimuli used to test for infants’ abstract rule learning, a “medial 
repetition rule” (top panel), and statistical learning, the specific positions of items in their ordinal 
positions (bottom panel). Each condition used identical habituation stimuli but tested for learning 
of either an abstract pattern or one based on items in sequence. Eleven-month-olds appeared to 
learn edge position violations, but not the abstract repetition rule. (Adapted from Schonberg et al. 
(2018))
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 Testing Methods

The majority of published infant SL studies have employed a learning phase (famil-
iarization or habituation) followed by a test phase in which infants are observed for 
evidence of segmentation of continuous input, undifferentiated except by virtue of 
TP differences among adjacent items, and recognition of parsed units vs. foil stimuli 
consisting of a reordering of individual items (see Saffran & Kirkham, 2018, for 
review). Effects of variations in testing methods, such as the use of different stimuli 
in the same paradigm, are not well understood (see Chap. 4 for further discussion), 
but there is some evidence that their investigation can be fruitful (Kirkham et al., 
2007). For example, Lewkowicz (2004) examined infants’ detection of violations of 
serial order of items in sequence and found that ordinal information was more read-
ily identified in sequences of linearly moving objects than looming objects pre-
sented in a single location (as in the Kirkham et al., 2002, method).

Eye-tracking and brain-based methods have provided complementary and, in 
some cases, unique insights into infants’ SL. Eye-tracking methods involve records 
of infants’ point of gaze as they view displays on a monitor (Gredebäck, Johnson, & 
von Hofsten, 2010). SL studies have examined eye movement (saccadic) latencies 
to items in sequence, the prediction being that spatial locations of more predictable 
items, by virtue of high TPs between items, will be fixated more quickly. As noted 
previously, evidence in support of this prediction was provided by the Kirkham 
et al. (2007) experiment in which infants were found to look toward locations in 
which a predictable item appeared vs. one of the other five locations on the display. 
More recently, Tummeltshammer and Kirkham (2013) examined 8-month-olds’ 
saccadic latencies when viewing six-location visual arrays with sequences of spa-
tiotemporal events. Arrays resembled a house or storefront with windows in which 
shapes appeared one at a time in a probabilistic sequence comprising three shape 
pairs. Each shape appeared in a particular window, disappeared, and subsequently 
reappeared in a different window according to its assigned probability. Items 
appeared in sequence with TPs of 1.0, 0.75, or 0.5, and one group of infants viewed 
arrays with additional competing visual distracters. Items with higher TPs were 
attended more often and with fewer errors (i.e., predictive looks) overall, and this 
effect interacted with the presence of distracters: With no distraction, latencies were 
fastest to high-probability (0.75) TP events, but with distracters, latencies were fast-
est to “deterministic” events with TPs of 1.0. These findings suggest that infants’ SL 
guides predictive behavior and that predictions are influenced by distributional 
properties of the entire scene, even events (distracters) unrelated to the predict-
able items.

Brain-based methods have been used to examine cortical loci of SL with func-
tional MRI under various testing conditions in adults (e.g., Karuza et  al., 2013; 
Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Turk-Browne, Scholl, 
Chun, & Johnson, 2009) and children (McNealy, Mazziotta, & Dapretto, 2011). 
Electrophysiological methods, in particular event-related potentials (ERPs), have 
yielded evidence concerning the time course of “online” learning in adults from 
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changes in the timing and strength of electrical cortical potentials (viz., ERP com-
ponents) recorded at the scalp (e.g., Abla, Katahira, & Okanoya, 2008; Abla & 
Okanoya, 2009). ERPs have been used as an index of differences in visual SL 
between children with autism spectrum disorder (ASD) and typically developing 
children and have revealed impairments in some children with ASD (Jeste et al., 
2015). ERP methods are more feasible for use with young populations relative to 
fMRI, and they have been used to examine SL in infants. For example, Teinonen 
et al. (2009) observed ERP differences to statistically structured vs. unstructured 
speech sequences in sleeping neonates, and Marin et al. (2019) observed ERP dif-
ferences during a visual SL task between 3-month-old infants at elevated risk for 
ASD (due to high genetic load) and low-risk infants. The Jeste et al. and Marin et al. 
studies are discussed in more detail in the next section.

In sum, eye-tracking and brain-based methods, in particular electrophysiological 
methods, require specialized designs and equipment but can provide particularly 
sensitive measures of SL.  This can be especially important for infant studies. 
Infants’ control of eye movements is well-established even at birth (Gredebäck 
et al., 2010), and clever research designs can exploit infants’ tendency to explore 
novel scenes and learn contingencies among events, including probabilistic events. 
ERPs, likewise, can be used in infants at all ages (de Haan, 2007) and can reveal 
cortical activity in response to probabilistic events that more overt behaviors cannot 
necessarily reveal.

 Implications of Infant SL for Cognitive Development 
and Developmental Disabilities

There is extensive evidence that SL is related to and perhaps facilitates language 
acquisition (see Romberg & Saffran, 2010, for review). In 8-month-olds, for exam-
ple, nonsense words acquired via SL are treated as “candidate” words when embed-
ded in new linguistic contexts (Saffran, 2001); moreover, SL provides candidate 
words that can become associated with novel objects at 17  months (Graf Estes, 
Evans, Alibali, & Saffran, 2007) and with novel object categories at 22  months 
(Lany & Saffran, 2010). In addition, 8.5-month-olds’ performance on a visual SL 
task was correlated with the infants’ vocabulary size, assessed by parental report 
(Shafto, Conway, Field, & Houston, 2011). Six-month-old infants’ oculomotor 
responses to events in a visual pattern-learning task predicted vocabulary size 
16 months later (Ellis, Gonzalez, & Deák, 2014), and 6- to 8-year-olds’ visual SL 
performance predicted their comprehension of native-language syntax (Kidd & 
Arciuli, 2016). However, measures of cognitive development more broadly (i.e., 
independent of language), such as performance on the Bayley Scales (Bayley, 
2005), general IQ, and gesture comprehension, were not related to SL performance 
(Ellis et al., 2014; Kidd & Arciuli, 2016; Shafto et al., 2011).
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Evidence for how SL might affect developmental disabilities is consistent with 
these findings: SL is related to language acquisition and performance but may have 
somewhat less impact on cognitive function. For example, the possibility that SL is 
impaired in ASD has received mixed support. Some studies report impaired SL 
(e.g., Jeste et al., 2015; Scott-Van Zeeland et al., 2010), but others report little or no 
impairment (Mayo & Eigsti, 2012) or even enhanced SL in ASD (Roser, Aslin, 
McKenzie, Zahra, & Fiser, 2015). ASD, however, is a heterogeneous disorder that 
remains poorly understood at the level of individual differences (Jeste et al., 2015), 
and notably, these studies of SL in ASD used varying methods and tested different 
populations (e.g., children with unknown symptom severity vs. high-functioning 
adults), making direct comparisons of results difficult. In infants with Williams syn-
drome, a developmental disorder characterized by strong language skills but 
impaired intellectual capacity, SL seems to be intact (Cashon, Ha, Graf Estes, 
Saffran, & Mervis, 2016). A recent meta-analysis found strong and consistent evi-
dence for reduced SL in individuals with specific language impairment but mixed 
evidence for reduced SL in individuals with ASD (Obeid, Brooks, Powers, Gillespie- 
Lynch, & Lum, 2016).

Recently, Jeste et al. (2015) investigated ERP correlates of SL in children with 
ASD vs. typically developing controls. ERP was recorded as children watched 
streams of looming shapes, similar to methods described previously with infants 
(Kirkham et al., 2002), and after a learning phase, they introduced a violation of the 
expected sequence by showing an unexpected shape. This study revealed two 
important findings. First, the ASD group showed attenuated evidence of SL in two 
ERP components: a reduced “N1” component, which was theorized to signify early 
visual recognition, akin to the N100  in adults (Coull, 1998) and a reduced P300 
component, which represents attention to salient information and probabilities of a 
target stimulus (Picton, 1992). Second, analyses of individual differences in the 
ASD group revealed a positive correlation between N1 amplitude difference and 
nonverbal IQ and a positive correlation between P300 amplitude difference and 
adaptive social function. This study demonstrates, therefore, that ASD is highly 
variable among individuals, and variability in learning capacity may help explain 
deficits in social, and perhaps cognitive, function.

In infants, my colleagues and I recently recorded ERPs in 3-month-old infants at 
elevated or low risk for ASD, due to the presence (or not) of one or more close family 
members having received a diagnosis of ASD (Marin et al., 2019). We asked whether 
visual SL at 3 months, recorded as described previously for the Jeste et al. (2015) 
experiment, might predict cognitive function and ASD symptoms at 18  months. 
Interestingly, higher-risk infants demonstrated increased neural responses (late slow 
wave and N700 components) to the probabilistic event, whereas low-risk infants dem-
onstrated increased neural responses to the deterministic (expected) event. Moreover, 
individual differences in these ERP components at 3 months predicted visual recep-
tion ability and ASD symptoms at 18 months of age. The reasons for these differences 
so early in infancy are not yet clear, but the potential predictive value for emerging 
ASD symptoms from such observations may be an important finding.

2 Mechanisms of Statistical Learning in Infancy
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 Mechanisms Underlying Statistical Learning in Infancy

As noted in prior sections, SL is a powerful means by which infants learn about a 
structured environment, and studies of SL can be particularly informative about 
learning in children with developmental disabilities. Yet the specific processes 
underlying SL remain unclear. Recently, research in my lab (Slone & Johnson, 
2018) investigated two types of models underlying statistical learning: “statistical” 
(or “transition-finding”) and “chunking” (or “clustering”) models that have been 
proposed to account for SL in adults (Thiessen, Kronstein, & Hufnagle, 2013).

The goal of both statistical and chunking models is to account for sensitivity to 
sequential structure and the units that are learned, but they differ in the proposed 
representations stored in memory. Statistical or TP-learning models can be instanti-
ated in computational models known as simple recurrent networks (e.g., Elman, 
1990) that compute and represent statistical relations between items, such as TPs, in 
memory. Representing TPs informs the model of the likelihood of two items occur-
ring together and allows the model to predict individual items based on previous 
items in a sequence. In the syllable stream used by Saffran et al. (1996), for example 
(Fig. 2.1), the model would learn that the probability of pi after tu and the probabil-
ity of ro after pi are high, because items tu, pi, and ro always appear in order (in the 
word tupiro). The probability of pa after ro, in contrast, will be lower because padoti 
follows tupiro only 1/3 of the time in the familiarization sequence. In this way, sta-
tistical models can distinguish statistically coherent units of information contained 
within a sequence (e.g., tupiro) from less coherent units like part- words (e.g., 
ropado). Importantly, statistical models do not explicitly represent statistically 
coherent units (e.g., words); rather, they represent statistical relations between items 
(e.g., syllables) as TPs.

Chunking models, in contrast, represent statistically coherent units of information 
in memory. One such computational model, the “truncated recursive autoassociative 
chunk extractor” (TRACX), forms groupings simply by joining items that tend to co-
occur (French, Addyman, & Mareschal, 2011; Mareschal & French, 2017). Groupings, 
or chunks, become single units that can be stored in memory. Representations of units 
whose component items co-occur regularly are progressively strengthened in mem-
ory, whereas representations of units whose component items do not co-occur regu-
larly are forgotten. In the Saffran et al. (1996) sequence, for example, the model could 
initially capture the sequence tupiropadoti in three separate chunks: tupi, ropa, and 
doti. Over time, chunks tupi and doti will be reinforced in memory because their com-
ponent items always co-occur. In contrast, chunk ropa will only be weakly repre-
sented because its component items co-occur less frequently. Moreover, once the 
sequences tupi and piro become represented as single chunks, it becomes possible for 
tupiro to be captured as an even larger chunk (i.e., as the aggregate of tupi and piro). 
Thus, with sufficient exposure, the model will form strong representations of statisti-
cally coherent units of information (e.g., tupiro) and distinguish them from weakly 
represented part-words (e.g., ropado). Statistical relations among items are not 
retained in memory over time—only the chunks.
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Several studies have suggested that adults’ SL is best accounted for by chunking 
models (Fiser & Aslin, 2002a; Giroux & Rey, 2009; Orbán, Fiser, Aslin, & Lengyel, 
2008; Perruchet & Poulin-Charronnat, 2012), but others have provided evidence 
that statistical TP-learning models may often provide a better fit for adult perfor-
mance in SL tasks (Endress & Langus, 2017; Endress & Mehler, 2009). Moreover, 
it remains unknown which type of model best accounts for infants’ SL 
performance.

We addressed the question of whether statistical or chunking was the best account 
of infant sequence learning in three experiments with 8-month-olds (Slone & 
Johnson, 2018). In the first experiment, infants were familiarized with five-item 
sequences for 5 minutes. Sequences were constructed such that certain items were 
shared across units (see Fig. 2.4a). Following habituation, infants were tested for 
recognition of a familiar triplet (tantamount to a word in the Saffran et al., 1996, 

Fig. 2.4 Schematic depiction of familiarization and test sequences in experiments testing statisti-
cal vs. chunking models (see text for details). Numbers above adjacent shapes represent TPs during 
familiarization. Familiarization sequences are seen at the top in each panel and test sequences at 
the bottom. Brackets below shapes indicate the unit structure of the familiarization sequences. (a) 
Illusory triplet, (b) embedded pair, (c) embedded pair with increased exposure. (Adapted from 
Slone and Johnson (2018))

2 Mechanisms of Statistical Learning in Infancy
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study), a part-sequence (triplet), and an “illusory” triplet, composed of two pairs of 
items that had high TPs but had not been seen together. We reasoned that if infants 
had learned a chunk (the triplet) during familiarization, they would recognize the 
triplet when seen in isolation at test, but not the illusory triplet or the part-sequence. 
If infants recognized the illusory triplet, however, this would support statistical 
models, because the TPs of the familiar and illusory triplets were identical. The first 
prediction was supported, in line with chunking models.

In the second experiment, infants were familiarized with five-item sequences 
composed of one unique triplet and one unique pair (no shared items; see Fig. 2.4b). 
At test, infants viewed a familiar pair, a part-sequence (pair), and an “embedded 
pair,” composed of items that were part of the triplet. We reasoned that infant look-
ing at test would reveal whether they formed a triplet chunk that excluded the 
embedded pair, consistent with chunking models: recognition of the familiar pair 
but not the part-sequence or embedded pair. This prediction was also supported, 
again in line with chunking models.

Finally, in a third experiment, we asked if we might capture a point in time dur-
ing familiarization when infants had learned TPs among adjacent items but not yet 
formed full chunks. We did this with a condition testing for recognition of embed-
ded pairs, as in the previous experiment, but now employing twice the numbers of 
items and units: two unique triplets and two unique pairs, comprising 10 items in 
total (see Fig. 2.4c). Exposure time was kept the same, however, requiring infants to 
track more relations among items and thus perhaps impairing chunk formation. In 
support of this prediction and in contrast to the second experiment, infants in the 
third study appeared to recognize both familiar and embedded pairs, evidence that 
infants learned TPs between adjoining items, but exposure time had been insuffi-
cient for learning chunks of triplets. Taken together, these results inform the nature 
of infants’ SL: As a first step in sequence learning, TPs between items are acquired, 
and then chunks are learned from the accumulation of TP-linked pairs. But whether 
TPs are immediately discarded may depend on the learning requirements in context 
(cf. Endress & Langus, 2017).

 Conclusions and Broader Implications

Results of statistical learning studies can provide important constraints for theories 
of cognitive development, in particular computational models of associative learn-
ing in developmental disorders (Tovar, Westermann, & Torres, 2018), cross- 
situational/multimodal computational models of language acquisition (Monaghan, 
2017), and Bayesian computational models of category learning (Tenenbaum, 
Kemp, Griffiths, & Goodman, 2011). Yet many models of infant cognition do not 
take account of possible effects of stimulus modality on learning or possible 
 constraints in infant attention, memory, and learning capacity (e.g., Franz & Triesch, 
2010; Rogers, Rakison, & McClelland, 2004; Tenenbaum et al., 2011).
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In sum, much remains to be discovered with respect to infants’ SL, despite 
important progress in our understanding of SL as a vital part of language acquisition 
and as a window into the nature of some developmental disabilities. For example, 
links between infants’ SL and abstract rule learning remain unexplored but may 
involve comparison processes between items and relations (see Chap. 5). In addi-
tion, neural processes that give rise to statistical learning are becoming understood 
as interactions between the declarative and nondeclarative memory systems of the 
brain (Batterink, Paller, & Reber, 2019), but little is known about how these interac-
tions develop early in life. Nor is the developmental time course of SL in individuals 
well understood (Siegelman & Frost, 2015). Finally, an important question con-
cerns the role of SL in infants’ learning of real-world events. For example, when 
children begin to learn relations between objects, these may become chunked into a 
unit of “causal action” and associated with a label (e.g., a verb). Evidence for this 
and other possible contributions of SL to cognitive development await future study.
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