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A core goal in psychology is to understand the origins 
of cognition. This requires characterizing the learning 
mechanisms in newborn brains. One candidate mecha-
nism is statistical learning. A growing consensus across 
developmental psychology (Krogh, Vlach, & Johnson, 
2012; Saffran, Aslin, & Newport, 1996; Smith, Suanda, & 
Yu, 2014) and computational neuroscience (DiCarlo, 
Zoccolan, & Rust, 2012; Wiskott & Sejnowski, 2002) is 
that animals learn to interpret sensory input through 
statistical learning by associating features that co-occur 
in the input stream. Are statistical-learning abilities pres-
ent in newborn brains? What roles do experience and 
maturation play in the development of these abilities?

In a study published in Current Biology, Santolin, 
Rosa-Salva, Vallortigara, and Regolin (2016) reported 
that newborn chicks can encode the transitional prob-
abilities (TPs) between sequentially presented shapes. 
The chicks were reared for 2 hr with a structured visual 

sequence of shapes, and the order of the shapes was 
defined by TPs within and between shape pairs. The 
chicks were then tested with a two-alternative forced-
choice task to examine whether they could discriminate 
the familiar (structured) sequence from a novel 
sequence, either unstructured (Experiment 1) or with 
a new set of TPs between shapes (Experiment 2). The 
chicks showed a preference for the novel sequence, 
suggesting that chicks can encode the TPs between 
sequentially presented shapes.
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Abstract
What mechanisms underlie learning in newborn brains? Recently, researchers reported that newborn chicks use 
unsupervised statistical learning to encode the transitional probabilities (TPs) of shapes in a sequence, suggesting 
that TP-based statistical learning can be present in newborn brains. Using a preregistered design, we attempted to 
reproduce this finding with an automated method that eliminated experimenter bias and allowed more than 250 times 
more data to be collected per chick. With precise measurements of each chick’s behavior, we were able to perform 
individual-level analyses and substantially reduce measurement error for the group-level analyses. We found no 
evidence that newborn chicks encode the TPs between sequentially presented shapes. None of the chicks showed 
evidence for this ability. Conversely, we obtained strong evidence that newborn chicks encode the shapes of individual 
objects, showing that this automated method can produce robust results. These findings challenge the claim that  
TP-based statistical learning is present in newborn brains.
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This is a potentially important finding for two rea-
sons. First, this study indicates that TP-based statistical 
learning can be present in newborn brains during the 
earliest stages of visual learning. TP-based statistical 
learning might therefore be a foundational learning 
mechanism in newborn brains. Second, the Santolin 
et al. (2016) study suggests that newborn chicks have 
more powerful statistical-learning abilities than new-
born humans. Although human infants encode some 
statistical relations at birth (Bulf, Johnson, & Valenza, 
2011), they fail to encode TPs until 5 months of age 
(Marcovitch & Lewkowicz, 2009; Slone & Johnson, 
2015). This pattern of results implies that maturation or 
experience (or both) play a role in the development of 
TP-based statistical learning for humans, but not for 
chicks. To understand TP-based statistical learning, we 
must therefore understand how (and why) its develop-
mental trajectory could differ so radically across spe-
cies. Given the potential import of the Santolin et al. 
study for understanding the origins, development, and 
evolution of TP-based statistical learning, it is crucial 
to ensure that the results are accurate and robust.

Although Santolin et al. (2016) tackled an important 
theoretical question, the study had three limitations: 
noisy measurements (low signal-to-noise ratio), small 
effect sizes, and high analytic flexibility (e.g., flexibility 
in terms of the number of subjects that were tested). 
These three factors are now known to be key contribu-
tors to the replication crisis (Munafò et al., 2017). When 
data are noisy, studies often produce estimates of per-
formance that are considerably higher (or lower) than 
the true population performance (Loken & Gelman, 
2017). These inflated estimates of performance can sig-
nificantly increase false-positives rates, especially when 
researchers have flexibility in terms of the number of 
subjects that are tested, analyses that are performed, and 
results that are reported (Simmons, Nelson, & Simonsohn, 
2011). Here, we attempted to reproduce the results from 
the Santolin et  al. study using a preregistered design 
(which limits analytic flexibility) and an automated 
method (which allows large amounts of precise behav-
ioral data to be collected from each chick).

Fueled by innovation in image-based tracking soft-
ware, it is now possible to fully automate controlled-
rearing experiments with newborn chicks ( J. N. Wood, 
2013). Automation removes the possibility of experi-
menter bias and allows chicks’ behavior to be measured 
continuously (24 hr per day, 7 days per week), produc-
ing massive amounts of data per subject. Conversely, 
with nonautomated methods, researchers must collect 
data manually, limiting the amount of data collected 
per subject. For instance, Santolin et al. (2016) collected 
6 min of test data per chick, whereas we collected 5,600 
min of test data per chick in Experiment 1 and 1,600 

min of test data per chick in Experiment 2. Thus, across 
two experiments, we collected 900 and 250 times more 
test data per subject than in the original study. This 
allowed us to obtain measurements that were 3 to 4 
times more precise than those in the original study, 
substantially improving the power of the experimen-
tal design. Our study was therefore not a direct rep-
lication of the Santolin et  al. study but, rather, an 
attempt to reproduce the findings with a more pow-
erful method.

Experiment 1

In the first week of life, newborn chicks were exposed 
to an imprinting sequence consisting of a stream of four 
shapes presented in an order defined by the TPs 
between shapes (Fig. 1a; see also Video S1 in the Sup-
plemental Material available online). In the second 
week, we tested the chicks using a two-alternative 
forced-choice task (Fig. 1b; see also Videos S2 and S3 
in the Supplemental Material). In the TP condition, one 
monitor showed a familiar TP sequence (in which the 
TPs between shapes matched the imprinting sequence) 
and the other monitor showed a novel TP sequence (in 
which the TPs between shapes did not match the 
imprinting sequence). In the shape-recognition condi-
tion, one monitor showed a sequence of familiar shapes, 
and the other monitor showed a sequence of novel 
shapes.

Method

Subjects. Twelve Rhode Island Red domestic chicks 
(Gallus gallus) of undetermined sex were tested. No sub-
jects were excluded from the analyses. The sample size 
was determined by a power analysis based on the results 
of prior automated controlled-rearing studies with new-
born chicks (J. N. Wood, 2013, 2014). Specifically, in both 
experiments in the Santolin et al. (2016) study, the research-
ers reported group performance rates of 37% (chance 
level = 50%). As described below, our automated method 
reduces measurement error by increasing the amount of 
data collected per chick. Thus, for our power calculations, 
we assumed a performance rate that was similar to the one 
used in the original study (37%) but with less measure-
ment error. Automated studies from our lab typically 
yield standard deviations (across subjects) of approxi-
mately 10% (S. M. W. Wood & Wood, 2019), whereas the 
standard deviation in the Santolin et al. study was approx-
imately 35%. Thus, our approximate expected effect size 
(Cohen’s d) was 1.3.1 A sample size of 7 subjects was 
required to achieve 80% power for an effect size of 1.3 (R 
package pwr; R Core Team, 2015, Version 3.1.3). To per-
form a high-powered replication, we tested 12 chicks, 
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which powered our experiment to 98%, assuming the 
parameters above.

The eggs were obtained from a local distributor and 
incubated in darkness in an OVA-Easy incubator (Brinsea 
Products, Titusville, FL). The incubation room was kept 
in complete darkness. Within 24 hr after hatching, the 
chicks were moved from the incubator to the controlled-
rearing chambers in darkness with the aid of night vision 
goggles. Each chick was raised singly within its own 
chamber. We maintained the room temperature at 80° F 
for the duration of the experiment. This research was 
approved by the University of Southern California Insti-
tutional Animal Care and Use Committee.

Procedure. Newborn chicks were reared for 2 weeks 
within specially designed controlled-rearing chambers. 
The chambers measured 66 cm (length) × 42 cm (width) × 
69 cm (height) and contained no real-world (solid, mov-
able) objects. To present object stimuli to the chicks, we 

projected virtual 2-D shapes on two display walls (Acer 
19-in. LCD monitors with 1,440 pixel × 900 pixel resolution) 
situated on opposite sides of the chamber. We presented 
the stimuli 24 hr per day, 7 days per week, without a light/
dark cycle. The average luminosity of the chambers was 
45.3 lumens when fully lit. Food and water were available 
within transparent troughs in the ground that measured 66 
cm (length) × 2.5 cm (width) × 2.7 cm (height). The floors 
of the chambers consisted of black wire mesh (0.5-in. grid 
spacing) supported over a black matte surface.

The chambers recorded all of the chicks’ behavior 
(9 samples per second, 24 hr per day, 7 days per week) 
via microcameras in the ceilings and automated image-
based tracking software (EthoVision XT; Noldus Infor-
mation Technology, Leesburg, VA). Automation allowed 
large numbers of test trials (up to 140) to be collected 
from each chick; in total, approximately 4,032 hr of video 
footage (14 days × 24 hr per day × 12 subjects) were 
collected for this experiment. Accordingly, we were able 
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Fig. 1. Experiment 1 method. The illustrations in the top row show a controlled-rearing chamber (a) during the input phase and (b) during 
the test phase. The stimuli design (c) is shown in the bottom row. During the input phase, an imprinting sequence defined by the transitional 
probabilities (TPs) within and between shape pairs appeared on one display wall at a time. The imprinting sequence is shown in the box with 
the black border (c). During the test phase, we presented chicks with two-alternative forced-choice tasks. In each test trial, one display wall 
showed the imprinting sequence (c, box with black border), and the other display wall showed one of four novel sequences (c, boxes with 
blue and orange borders). In the TP condition (c, boxes with blue borders), chicks saw the same shapes as in the imprinting sequence, but in 
novel orders. In the shape-recognition condition (c, boxes with orange borders), the shapes were novel. In each condition, the novel sequence 
was presented in either a structured order or a random order. Numbers in (c) show the probability of transitioning from one shape to the next.
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to measure each chick’s performance with high preci-
sion. More generally, automated controlled-rearing meth-
ods produce measurements that are 3 to 4 times more 
precise and effect sizes that are 3 to 4 times larger than 
those produced by nonautomated studies (S. M. W. Wood 
& Wood, 2019). Automated studies also eliminate experi-
menter bias and allow for analyses on the individual 
subject level.

In the first week of life, the chicks were reared with 
animations of four shapes presented in an order defined 
by TPs between shapes (the imprinting sequence). The 
shapes were presented sequentially on one of the dis-
play walls (see Video S1). The display wall showing the 
imprinting sequence switched every 40 min. Each shape 
was presented for 2.0 s and loomed from 5 cm to 10 cm 
in height on the monitor. All of the shapes were red, 
and all of the sequences were shown on a white back-
ground to prevent reflection of the chicks on the moni-
tor. The imprinting sequence consisted of a triangle, 
cross, circle, and X shape for half of the chicks and a 
star, square, arrow, and arc for the other half of the 
chicks. As in the Santolin et al. (2016) study, the imprint-
ing sequence consisted of two shape pairs defined by 
statistical dependencies between and within pairs’ ele-
ments. For example, the triangle was always followed 
by the cross (TP = 1.0), and the circle was always fol-
lowed by the X shape (TP = 1.0). The item that appeared 
after the pair (i.e., following the cross or X shape) was 
the first element of one of the pairs (TP = 0.5). Repeti-
tions of the same pair were allowed. The only cue to 
segment the pairs was the statistical structure of the 
sequence.

In the second week, the chicks were presented with 
two-alternative forced-choice test trials. The chicks 
received 140 test trials (20 trials per day). Each test trial 
lasted 40 min and was followed by a 30-min rest period. 
During the rest periods, the imprinting sequence was 
shown on one display wall, and the other display wall 
showed a white screen.

During the TP test trials (see Video S2), one display 
wall showed a sequence with familiar shapes defined 
by the TPs from the imprinting sequence (familiar TP 
sequence), whereas the other display wall showed a 
sequence with familiar shapes defined by a different 
statistical structure (novel-order sequences). On half of 
the TP test trials, the novel-order sequence showed the 
shapes in a random order (random novel-order 
sequence; cf. Santolin et al., 2016, Experiment 1). On 
the other half of the TP test trials, the novel-order 
sequence was structured by TPs, but the TP structure 
was different from the imprinting sequence (TP-based 
novel-order sequence; cf. Santolin et al., 2016, Experi-
ment 2). Thus, if the chicks encoded the specific TP 
structure from the imprinting sequence, then they 
should have distinguished the familiar TP sequence 

from the novel-order sequence on both types of TP test 
trials. If the chicks were sensitive to only structured 
sequences versus unstructured sequences (as reported 
in newborn infants; Bulf et al., 2011), then the chicks 
should have distinguished the familiar TP sequence 
from the random novel-order sequences but not from 
the TP-based novel-order sequences. The shapes were 
the same color in the imprinting and test sequences.2

During the shape-recognition test trials (see Video 
S3), one display wall showed a sequence of familiar 
shapes defined by the TPs from the imprinting sequence 
(familiar-shape sequence), whereas the other display 
wall showed a sequence of novel shapes (novel-shape 
sequence). The novel shapes were the same color and 
size as the familiar shapes. On half of the shape-recognition 
test trials, the novel-shape sequence showed the shapes 
in a random order (random novel-shape sequence). On 
the other half of the novel-shape test trials, the novel-order 
sequence was structured by TPs (TP-based novel-shape 
sequence). If the chicks encoded the shapes from the 
imprinting sequence, then they should have distinguished 
the familiar-shape sequence from the novel-shape 
sequence on both types of shape-recognition test trials.

The order of the test trials was pseudorandomized 
to ensure that (a) each type of test trial was presented 
an equal number of times per day and (b) the familiar 
and unfamiliar sequences were presented an equal 
number of times on the same monitor as the imprinting 
sequence from the preceding rest period.

Results

Performance by trial type. To measure each chick’s 
preference, we calculated the amount of time each sub-
ject spent within zones (22 cm × 42 cm) next to each 
monitor. Preference for a target stimulus was calculated 
as the time spent by the correct sequence divided by the 
time spent by both sequences. The results are shown in 
Figure 2. To assess whether performance differed across 
the test conditions, we performed a repeated measures 
analysis of variance (ANOVA) with within-subjects fac-
tors of trial type (TP vs. shape recognition) and novel-
sequence order (random vs. TP based). The ANOVA 
revealed a significant main effect of trial type, F(1, 11) = 
20.655, p < .001, ηp

2 = .653. The main effect of novel-
sequence order, F(1, 11) = 0.761, p = .402, ηp

2 = .065, and 
the interaction, F(1, 11) = 0.000, p = .990, ηp

2 = .000, were 
not statistically significant. In the TP condition, the chicks 
failed to show a significant preference for either the 
familiar TP sequence or the novel sequence, M = 49.406%, 
SE = 1.087%, 95% confidence interval (CI) = [47.012%, 
51.799%], t(11) = 0.547, p = .596, Cohen’s d = 0.158, 
Bayes factor (BF)3 in favor of the null hypothesis = 4.046 
(see Fig. 2a). Conversely, in the shape-recognition con-
dition, the chicks spent significantly more time with the 
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familiar shapes than the novel shapes, M = 65.163%,  
SE = 3.217%, 95% CI = [58.083%, 72.243%], t(11) = 4.714, 
p < .001, Cohen’s d = 1.361, BF in favor of the alternative 
hypothesis = 64.702 (see Fig. 2a). Paired-samples t tests 
showed that performance was significantly higher in the 
shape-recognition test trials than the TP test trials, mean 
difference = 15.758%, SE = 3.465%, 95% CI = [–23.385%, 
–8.131%], t(11) = 4.547, p < .001, Cohen’s d = 1.313, BF 
in favor of the alternative hypothesis = 50.812. Thus, the 
chicks were not sensitive to the order of objects in the 
sequence, but they were sensitive to the shapes of the 
individual objects.

Individual-level performance. Because we collected 
approximately 90 hr of test data per chick, we were also 
able to perform individual-level statistical analyses and 
assess whether each chick performed above or below 
chance level. With large amounts of data from each chick, 
these individual-level analyses are highly powered: Many 
reach 5-sigma levels of statistical significance (the statisti-
cal threshold for new discoveries in theoretical physics) for 
individual subjects (e.g., J. N. Wood, 2013). Another ben-
efit of individual-level analyses is that each subject can 
serve as a replication attempt of an effect. If we consider 
an experiment as being on an individual level (rather than 
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Fig. 2. Performance in Experiment 1. The overall percentage of time that chicks spent with the imprinting sequence versus the 
novel sequence is shown (a) for the two novel sequences in the transitional-probability condition and the two novel sequences 
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group level), then each subject provides an opportunity to 
replicate an effect. Experiments at the individual level are 
possible only with enough measurements from each sub-
ject to reliably reject or fail to reject the null hypothesis for 
each individual. Thus, our automated method permits 
individual-level internal replications.

In the individual-level analysis, no chicks showed 
evidence of TP-based statistical learning (all ps > .05; 
see Fig. 2c). The average Cohen’s d across individual 
subjects in the TP condition was –0.016, 95% CI = 
[–0.099, 0.066] (see Fig. 3). Conversely, in the shape-
recognition condition, 8 of the 12 chicks showed a 
statistically significant preference for the familiar shapes 
(7 chicks: p < .0001; 1 chick: p < .05; see Fig. 2d). The 
average Cohen’s d across individual subjects in the 
shape-recognition condition was 0.658, 95% CI = [0.287, 
1.028] (see Fig. 3). Thus, on the shape-recognition task, 
our method produced robust results—both on the indi-
vidual and group levels—with the same group of chicks 
that failed to encode TPs between shapes.

Change over time. Performance by test day is shown in 
Figure 2b. To test whether performance changed across 
the test phase, we performed a repeated measures 
ANOVA with the within-subjects factors of trial type (TP 
vs. shape recognition) and test day (1–7). The ANOVA 

revealed a significant main effect of trial type, F(1, 11) = 
20.364, p = .0009, ηp

2 = .649. The main effect of test day, 
F(6, 66) = 1.162, p = .337, ηp

2 = .096, and the interaction 
of trial type and test day, F(6, 66) = 1.405, p = .226, ηp

2 = 
.113, were not significant. Performance was significantly 
above chance level on every test day in the shape-recog-
nition condition (Holm-Bonferroni corrected, all ps < 
.05), whereas performance did not exceed chance level 
on any test day in the TP condition (all ps > .25). Thus, 
the chicks in Experiment 1 showed no sensitivity to the 
TPs between shapes across the test phase, despite show-
ing robust recognition of the individual shapes.

Discussion

Despite showing a strong ability to distinguish novel 
shapes from familiar shapes, the chicks failed to encode 
TPs between shapes. Because our method was able to 
detect robust shape recognition in chicks, the chicks’ fail-
ure to encode TPs between shapes cannot be explained 
by problems with the method. Indeed, we used an auto-
mated method that eliminates experimenter bias and 
reduces measurement error, two essential steps for 
improving the power and precision of empirical studies.

There were, however, a number of methodological 
differences between the Santolin et al. (2016) study and 
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the present study, and it is possible that these differ-
ences caused the divergent findings across studies. To 
reconcile these differences, we performed a second 
experiment in which we substantially reduced the dif-
ferences between the studies.

Experiment 2

Method

The methods in Experiment 2 were identical to those 
used in Experiment 1, except in the following ways. 
First, as did Santolin et  al. (2016), we started testing 
newborn chicks on Day 1 after hatching. By testing for 
statistical learning on Day 1, Experiment 2 allowed us 
to detect early emerging statistical-learning abilities. Sec-
ond, as did Santolin et al., we exposed the chicks to the 
imprinting sequence for 120 min before initiating the 
first test trial. By exposing the chicks to the imprinting 
sequence for 120 min, Experiment 2 allowed us to detect 
statistical-learning abilities that may emerge from only 
small amounts of experience. Third, as did Santolin 
et al., we used shorter test trials, reducing the length of 
the test trials from 40 min to 20 min. This allowed us to 
collect trials that were closer in duration to those used 
in the Santolin et al. study, while also collecting more 
data per subject to reduce measurement error. Fourth, 
as did Santolin et al., we reared the chicks in darkness 
for 30 min after they were exposed to the imprinting 
sequence. Experiment 2 therefore allowed us to detect 
statistical-learning abilities that may emerge only when 
chicks are maintained in a dark environment after expo-
sure to an imprinting sequence. Fifth, as did Santolin et al., 
we limited the design to a single type of test trial (imprint-
ing sequence vs. random sequence; cf. Bulf et al., 2011). 
In Experiment 1, we had four types of test trials, but it is 
possible that this might have somehow contaminated the 
results. Experiment 2 addressed this concern directly.

We presented the experimental cycle (120-min 
imprinting sequence, 30-min darkness period, 20-min 
test trial) repeatedly, 8 times per day, for 10 days. By 
repeating the experimental cycle, we could (a) attempt 
to replicate the Santolin et al. (2016) study in the first 
experimental cycle and (b) continue to look for evidence 
of statistical learning across the first 10 days of life. We 
preregistered the design and analyses for this experi-
ment. The preregistration can be found at osf.io/cmxya/.

Results

Preregistered analyses. The results are shown in Figure 
4. The chicks’ overall performance was not significantly 
different from chance level, M = 49.692%, SE = 0.467%, 95% 
CI = [48.726%, 50.657%], t(23) = 0.661, p = .515, Cohen’s 

d = 0.135, BF in favor of the null hypothesis = 5.169 (see 
Fig. 4a). We also performed one-sample t tests to deter-
mine whether any individual chicks succeeded at the 
task (see Fig. 4b). To compute a t test for an individual 
chick, we calculated the percentage of time the chick 
spent in proximity to the TP-based sequence versus the 
random-order sequence for each trial throughout the 
experiment. No chicks performed significantly above or 
below chance level (all ps > .10). The average effect size 
(Cohen’s d) across individual subjects was –0.013, 95%  
CI = [–0.045, 0.020].

We also tested whether performance changed across 
the test days, as it is theoretically possible that chicks 
could prefer novel stimuli in the first 1 to 2 days of life 
but eventually imprint to both stimuli, thus preferring 
both equally in later test days. Contrary to this hypoth-
esis, our results showed that performance did not differ 
significantly across the test days (repeated measures 
ANOVA), F(9, 207) = 1.215, p = .287, ηp

2 = .050 (see 
Fig. 4c).

Post hoc analyses. The results of our test-day analysis 
(ANOVA) did not support the hypothesis that chicks 
encode and detect TPs in the first days of life but then 
lose interest in TP information during later days of life. To 
provide a more direct test of this hypothesis, we analyzed 
whether the chicks performed above chance level on any 
of the test days. Performance was not significantly differ-
ent from chance level during any test day (all ps > .05; 
see Fig. 4c), including Day 1, M = 51.759%, SE = 1.704%, 
95% CI = [48.235%, 55.283%], t(23) = 1.032, p = .313, 
Cohen’s d = 0.211, BF in favor of the null hypothesis = 3.847, 
or Day 2, M = 51.881%, SE = 2.457%, 95% CI = [46.799%, 
56.964%], t(23) = 0.766, p = .452, Cohen’s d = 0.156, BF in 
favor of the null hypothesis = 4.816.

Because Santolin et al. (2016) collected a single test 
trial per chick, we also explored the possibility that 
sensitivity to TP information is present on the first test 
trial but no longer exists in subsequent test trials. Per-
formance was not significantly different from chance 
level on the first test trial, M = 52.607%, SE = 11.110%, 
95% CI = [29.432%, 75.783%], t(20) = 0.235, p = .817,  
d = 0.051, BF in favor of the null hypothesis = 5.838.

Discussion

In Experiment 2, we found no evidence for statistical 
learning, either on the group level or on the individual-
subject level. We also found no evidence for statistical 
learning during Days 1 to 2 of life, contradicting the 
results from the Santolin et al. (2016) study. During the 
entirety of the 10-day experiment, the chicks’ environ-
ment contained the imprinting sequence 100% of the 
time (other than the periods of darkness). Thus, the 

http://www.osf.io/cmxya/
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chicks had ample opportunity to learn the statistical 
structure of the sequence. In agreement with Experi-
ment 1, Experiment 2 indicates that newborn chicks do 
not encode TPs between sequentially presented shapes.

General Discussion

Across two experiments, we attempted to reproduce 
the findings from the Santolin et al. (2016) study show-
ing that newborn chicks can encode the TPs between 
sequentially presented shapes. Our experiments 
revealed no evidence for TP-based statistical learning 
in chicks.

In Experiment 1, the chicks failed to learn the statisti-
cal structure of the sequence despite acquiring 1 week 
of experience with that sequence before testing. A critic 
might argue that we failed to find evidence for TP-based 

statistical learning in this experiment because the chicks 
received too much time with the imprinting sequence 
or because the chicks were tested for prolonged periods 
of time. However, studies with humans have shown that 
TP-based learning gets stronger with greater exposure 
to a sequence (Pena, Bonatti, Nespor, & Mehler, 2002), 
and many studies have shown that testing chicks for 
prolonged periods yields robust effects in visual-
discrimination tasks, including object recognition ( J. N. 
Wood, 2013), face recognition (S. M. W. Wood & Wood, 
2015), and action recognition (Goldman & Wood, 2015). 
Moreover, prolonged testing increased the effect size 
in the shape-recognition condition by threefold to four-
fold, while also producing a threefold to fourfold 
decrease in measurement error (see Fig. 5). Thus, our 
method produced far more precise measurements than 
Santolin et al.’s (2016) did.
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To directly examine whether methodological differ-
ences led to the divergent findings across studies, we 
performed a second experiment in which we minimized 
these differences. As in the Santolin et al. (2016) study, 
the chicks were exposed to the imprinting sequence 
for 120 min, reared in darkness for 30 min, and then 
presented with a short test trial. We then repeated this 
experimental cycle 8 times per day, for 10 days, to 
explore whether TP-based statistical learning emerges 
during early or late stages of development. We found 
no evidence for TP-based statistical learning during any 
stage of the experiment.

The Santolin et al. (2016) study had noisy measure-
ments, small effect sizes, and high analytic flexibility—
three factors that increase false-positive rates. Our study 
overcame these problems by using a preregistered 
design (which limits analytic flexibility) and automation 
(producing large amounts of precise behavioral data 
from each chick). Given that our measurements were 
3 to 4 times more precise than those in the Santolin 

et  al. study, our findings cast doubt on claims that 
newborn chicks use TP-based statistical learning.

Importantly, our results do not rule out the possibil-
ity that newborn chicks use other types of statistical 
learning to build visual representations. For example, 
recent automated controlled-rearing studies indicated 
that newborn chicks require slow and smooth visual-
object input to learn to recognize objects ( J. N. Wood, 
2016; J. N. Wood, Prasad, Goldman, & Wood, 2016;  
J. N. Wood & Wood, 2016, 2018). These results accord 
with unsupervised temporal-learning models in com-
putational neuroscience that involve a type of statistical 
learning in which the brain encodes slow and smooth 
signals from the environment to build up accurate 
visual representations of the world (DiCarlo et al., 2012; 
Foldiak, 1991; Rolls, 2012; Stone, 1996; Wiskott & 
Sejnowski, 2002). We hypothesize that newborn chicks 
are capable of this type of statistical learning (encoding 
slow and smooth visual signals) but not other types of 
statistical learning (encoding TPs between objects).
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Detecting slow and smooth signals requires encod-
ing co-occurrences of retinal inputs (which can be 
implemented with models using spike-timing-dependent 
plasticity-learning rules; Sprekeler, Michaelis, & Wiskott, 
2007). Conversely, detecting TPs is more complex 
because TPs entail predictive relations among items 
across longer time windows rather than integrating 
input signals over the span of milliseconds. Thus, TPs 
may rely on working memory and higher-level process-
ing mechanisms that encode information at longer time 
scales (Kiebel, Daunizeau, & Friston, 2008).

More generally, newborn chicks’ failure to encode 
TPs is consistent with previous automated controlled-
rearing experiments showing that chicks fail to encode 
the order of images in a sequence, despite encoding 
the individual images ( J. N. Wood et al., 2016). These 
results are also consistent with prior studies showing 
that although human infants encode some statistical 
relations at birth (e.g., discrimination of structured from 
random sequences; Bulf et al., 2011), they fail to encode 
TPs until 5 months of age (Marcovitch & Lewkowicz, 
2009; Slone & Johnson, 2015). Thus, it may not be nec-
essary to postulate differences in statistical-learning 
abilities across species to explain why newborn chicks 
succeed in TP-based statistical learning whereas new-
born humans fail (Santolin & Saffran, 2018). Both new-
born chicks and newborn humans appear to be 
incapable of TP-based statistical learning, suggesting 
that this ability requires extended maturation or experi-
ence (or both) in order to develop.

In sum, a core goal in psychology is to understand 
the learning mechanisms in newborn brains. Our study 
indicates that TP-based statistical learning is not one of 
those mechanisms (at least in the visual domain for 
chicks). TP-based learning may emerge later in devel-
opment, as with humans, or may never emerge in some 
species. Of course, it is also possible that something 
about our method prevents TP-based statistical learning 
while enabling object learning, and other methods 
could provide robust, replicable evidence for this ability 
in chicks. If so, our results would still indicate that there 
are strong constraints on the types of situations that 
can successfully elicit TP-based statistical learning. 
Understanding the development of TP-based statistical 
learning—and its distribution across the animal king-
dom—is an important avenue for future research.
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Notes

1. One-sample Cohen’s d was calculated as follows: absolute 
value (average performance – chance performance)/standard 
deviation = absolute value [37% – 50%]/10% = 1.3.
2. Santolin et al. (2016) changed the objects’ color across the 
imprinting and test phases, whereas we held object color con-
stant. We introduced this change because in the vast majority 
of studies on visual statistical learning, object color is held con-
stant across the learning and test phases. In terms of replication, 
holding object color constant should have made it easier for 
the chicks to recognize the familiar TP sequence because the 
chicks did not need to generalize across a color change.
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3. For all BFs, we used the scaled Jeffreys-Zellner-Siow BF with 
scale (r) of 1.0 (Rouder, Speckman, Sun, Morey, & Iverson, 
2009). For reference, BFs between 0 and 3 are often considered 
anecdotal evidence, BFs between 3 and 10 are considered mod-
erate evidence, and BFs greater than 10 are considered strong 
evidence.
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